BCIT Thesis and other Required Graduate Degree Works | BCIT Institutional Repository

BCIT Thesis and other Required Graduate Degree Works

Pages

Evaluating stream degradation in Villa De Allende, Mexico
I examined the anthropogenic effects on the water quality of headwater streams in the western mountains of the state of Mexico. Rural development has negative effects on the ecology of local streams by diverting and pumping surface and groundwater, removing riparian forests for the construction of buildings, roads, and agricultural fields, and dumping refuse in stream channels. Local development, construction, roads, and agriculture also are sources of pollution that enter the streams during rain events. These negative ecological effects are common to many streams in the watershed of the Chilesdo dam. The combined effects of human development negatively affect the quality of surface water and groundwater aquifers. The issue of anthropogenic effects on the water quality of headwater streams is relevant ecologically because of likely effects on flora and fauna that depend on these streams and because of the role of headwater streams in the context of the larger watershed. Effects on upstream areas directly affect people, animals, and plants downstream. This issue is relevant economically because rural communities depend on the availability of water of suitable quality for agriculture and livestock. In addition, local water quality directly affects the cost of water purification downstream at dams that feed the Cutzamala system, a major source of Mexico City’s drinking water. This issue is relevant socially because the local community depends on this water for domestic consumption. Compromising water quality and abundance could destabilize the lives of local people because poor water quality and water contamination are a public health concern. Additionally, climate change is likely to make this resource scarcer. Projections for all major scenarios used by the International Panel on Climate Change indicate elevated year-round temperatures and decreased overall precipitation in the region (IPCC 2013). I addressed concerns over water quality by testing differences among streams with anthropogenic alterations and a stream that had few anthropogenic alterations. I sampled benthic macro-invertebrate communities as indicators of water quality within the streams. Benthic invertebrates are a useful bio-indicator for water quality and environmental disturbances in river systems because different taxonomic groups of invertebrates have different tolerances to water pollution. I measured the abundance and taxonomic richness of invertebrates that exhibit different sensitivities to water quality. My results revealed that taxonomic richness was lower in streams that had anthropogenic alterations. My results also revealed that the abundance of “sensitive” and “somewhat sensitive species” were lower and that the abundance of “pollution-tolerant species” was higher in streams with anthropogenic alterations. The stream with few anthropogenic alterations had the highest taxonomic richness and largest number of sensitive and somewhat sensitive species. These results indicate that human activities are having negative effects on water quality. Given my results, I suggest that restoration of degraded streams should reduce water diversion, riparian encroachment, and refuse disposal. I propose solutions to guide these restoration efforts. My data suggests that a coordinated local and regional effort is required to reduce the negative effects of human development and to restore local streams to an ecological condition that will sustain water quality and quantity to enable local communities and the local environment to thrive.
The effects of canopy closure on precipitation throughfall
Since the 1860s the watershed of Spanish Bank Creek has experienced many ecological disturbances due to extensive old-growth logging and urban development. Most notably, these disturbances have altered the vegetative composition and hydrology throughout the watershed. The historic old-growth forest has been replaced by species typical of earlier seral stages, as well as invasive species such as English ivy (Hedera helix). This disturbed vegetation mosaic is characterized by an arrested ecological trajectory that perpetuates degraded conditions. Urban development has eliminated over a third of the historic length of Spanish Bank Creek and storm drains were installed to direct residential drainage into the stream. The combination of a disturbed forest and degraded hydrology intensifies runoff and associated sediment transport, and decreases the hydraulic retention time of the watershed. This has led to a significant decline in abundance of chum, coho, and cutthroat salmonids in Spanish Bank Creek. Previous research has established how trees partition precipitation into throughfall, stemflow, and interception, however there are few studies examining the effects of canopy closure on throughfall within the context of ecological restoration. Thus, the objective of this paper is to determine if increasing canopy closure can be used as a restoration model to decrease throughfall, and consequently increase the hydraulic retention time of the watershed. Results indicated that greater canopy closure was associated with decreased precipitation throughfall. From these results I formulated a restoration goal and several treatments that would increase canopy closure, and also ameliorate the degraded vegetative composition and hydrology of the watershed. The restoration treatments prescribed in this paper constitute five years of physical enhancements from which self-sustaining biological processes will continue to restore ecosystem function and structure. Successful implementation of these restoration treatments will positively affect regional biota, as well as users of the Pacific Spirit Regional Park who come to recreate, learn, and connect.
Eco-cultural restoration of wetlands at Tl’chés (Chatham Islands), British Columbia, Canada
My research project examined the restoration possibilities for two culturally important wetland ecosystems at Tl’chés (Chatham Islands, British Columbia, Canada). The first wetland is a sacred bathing pool and holds cultural significance, the second is a remnant silverweed and springbank clover (Potentilla anserine ssp. pacifica and Trifollium wormskjoldii) root garden. These wetlands are necessary ecosystems for the wildlife on Tl’chés as wetlands are rare, but also an integral part of Songhees’ cultural practices. My work was done at the invitation from elder Súlhlima (Joan Morris) who was one of the last resident of the islands and retains hereditary rights there, and Songhees Chief Ron Sam and band council. The goal of my project was to develop a restoration plan to restore the wetlands to pre-abandonment conditions, so cultural practices can continue, and to benefit the islands native plant and animal species. The project highlights the value of combining traditional ecological knowledge (TEK) and traditional resource and environmental management (TREM) practices with ecological restoration., Eco-cultural restoration, wetland ecosystems, traditional ecological knowledge (TEK), traditional resource and environmental management (TREM), estuarine root gardens, Songhees First Nation
Geochemical and biological response of an intertidal ecosystem to localized restoration efforts
Geochemical and biological attributes of three intertidal areas in the Squamish Estuary with different levels of disturbance (low, medium, and high) were assessed to determine short-­term ecosystem responses to localized restoration efforts conducted one year previously on a former log handing site. Sediment and macroinvertebrate variables were analyzed among sites to characterize the ecosystems response and provide insight on the nature and process of an assisted successional trajectory. Invertebrate composition and biomass were lowest on the site with the highest level of disturbance. The high disturbance site also contained the highest percentage of fine sand (0.0067 mm to 0.25 mm). This confirms that in the short term there are distinct site responses to disturbance and ameliorative restoration efforts – even in a highly dynamic estuarine environment. The medium site contained more invertebrates than the low disturbance site indicating that something other than localized disturbance is affecting the invertebrate community on the low site. All sites exhibited a less-­rich and less diverse invertebrate community than that of historical records (circa. 1970-­1980). Invertebrate community in the east delta today is more typical of estuarine environments with higher salinity levels -­ which indicates more widespread levels of disturbance throughout the Estuary is affecting the study sites. This study highlights the importance of considering temporal and spatial scales when setting restoration goals, objectives and creating monitoring plans. Additional monitoring of sediment, invertebrate, and other variables on restored and reference sites is recommended to characterize typical recolonization and reassembly attributes of restoring intertidal estuaries in coastal British Columbia. This would provide evidence and rigor in determining effective restoration techniques and management strategies for a critical and increasingly threatened ecosystem., Macroinvertebrates, Restoration, Sediment, Benthic ecology, Estuaries, Intertidal flats
Sound living in Vancouver's laneway housing
Laneway housing is an innovative higher density housing form introduced to meet the City of Vancouver’s EcoDensity Charter. This form of residential occupancy was introduced without specific acoustical standards for construction. Noise concerns generally accompany increasing urban density, particularly in housing located close to transportation and activity centers. Laneways and laneway housing have environmental and architectural features that can contribute to noise levels exceeding criteria for healthy living. To advance the state of practice, this research first explores the sonic environment of laneways, including sound propagation, urban canyon effects, and sound sources. Second, this research investigates the acoustics of the laneway house, including outdoor-indoor sound insulation of facades, architectural features, and floor plan layout in relation to environmental noise sources. Empirical field measurements, the CMHC road traffic noise model and software modelling programs are used to investigate the acoustical environmental quality of laneway housing. Findings from case study investigation of four laneways and six laneway houses are evaluated against the CMHC noise criteria for healthy living. The various research tools are evaluated for accuracy and practicality as acoustic design tools for Vancouver laneways and laneway housing. The results of this study can inform laneway development planning (including benefits of laneway vegetation), laneway house design, building envelope construction, and policy guidelines as the City of Vancouver continues in its plans for sustainable densification., Acoustics of small buildings, Urban canyon effect, Road traffic noise, Laneway house acoustics
RC-network based transient calculation method for thermal bridge analysis of multi-dimensional assemblies
Hourly dynamic energy performance study of buildings requires an in-depth understanding of dynamic thermal performance of building envelope assemblies. While two and three-dimensional building envelope thermal bridges have a great impact on whole-building energy simulations, heat storage capacity of the layers has also a significant influence. State of the art research has confirmed necessity of accurate thermal storage behavior analysis of building envelope assemblies in dynamic hourly building energy simulations. To-date, a number of studies have been conducted on the simplification of transient behaviour prediction of one, two and three-dimensional building envelope assemblies. In this study, the previous equivalent and simplified models for prediction of dynamic behaviour of building enclosure are reviewed, and an improved equivalent model based on frequency responses of RC-Network (FR-RCN) is presented. The model utilizes thermal RC-Network with three unknown resistances, two known resistances, and four unknown capacitances. The frequency responses of building envelope assembly are calculated either analytically (one dimensional assemblies), or numerically using COMSOL (two/three dimensional assemblies). Eureqa, a software which leverages evolutionary algorithms, is utilized in order to generate optimized unknown RC-Network resistances and capacitances considering the calculated frequency responses of the assembly. In this study, one light weight single-family home, one mass type structure high-rise building, and selected steel construction assemblies in climate zones 2 and 6 have been considered. A simple approach is also presented for the generation of equivalent FR-RCN models of variable insulation thickness assemblies. The comparison between the transient results calculated from the equivalent FR-RCN and COMSOL simulation shows good agreement. The performance of FR-RCN method is compared with other selected equivalent models, and an improvement in accuracy is confirmed., RC-Network, Multi-dimensional assemblies
Hygrothermal performance of super-insulated double-stud wood frame wall assemblies
In cold climates, much of wood-frame building enclosure durability failures and indoor air quality issues stem mainly from excessive moisture within enclosure components and these issues are more pronounced in buildings with higher levels of thermal insulation, with frequent mold and fungal growth complications. Nevertheless, buildings have been increasing their insulation levels (and this trend is expected to continue) due to climate change, depleting natural resources, ever-rising energy prices and growing expectation for occupants’ comfort and health. Incorporation of insulation materials with higher moisture storage and buffering capacities and also employing vapour retarders that can let walls dry out to both interior and exterior spaces are potential solutions. While the hygrothermal behaviour of these insulation materials have been extensively tested in material labs and computer modeling projects, their actual performance in different climatic zones demands more field experimental studies. In this study, a field experiment was designed to assess hygrothermal behaviors of five highly insulated test wall panels under Marine climatic zone of, Burnaby, British Columbia. Full size wall panel specimens of ‘double-stud’ wood-frame were instrumented with moisture and temperature sensors and filled with Dense Cellulose Insulation (DCI) and Low-Density Spray Polyurethane Foam Insulation (LD SPFI) under different vapour control layer scenarios of 4-mil Polyethylene film, Smart Vapour Retarder (SVR), and none. All test panels were exposed to the 4 controlled indoor and the actual outdoor climates and their hygrothermal response was recorded and analysed from 01 Sept 2016 to 31 May 2017. The experimental results suggested DCI is a proper insulation material provided that it is equipped with a dedicated interior vapour barrier. The results also suggested while both DCI had LD SPF had acceptable moisture behaviour; DCI had slightly better performance than LD SPF. As for vapour control strategies, Smart Vapour Retarder (SVR) did not show an obvious advantage over 4-mil Polyethylene film and in some cases was slightly outperformed by polyethylene hygrothermally. As a general comment, the exterior sheathing board, plywood had the highest moisture activity and all other components, mainly the exterior and interior studs and plates remained in safe moisture ranges throughout the test period., Insulation, Dense Cellulose Insulation, Low-Density Spray Polyurethane Foam Insulation, Hygrothermal performance
Model-based coupling of air and hydronic system operation in a high performance academic building
This research is motivated from preliminary teamwork on analyzing the “Performance Gap” of three high-performance buildings, which are currently under operation. All three buildings are facing operational challenges that are not unusual considering the complexity of their systems. However, evidence from design documents, an existing energy model, and operational data suggests that their performance is not entirely reflecting the design intent. This research follows the premise that there is a need to design buildings as systems-of-systems to be able to understand, interpret, quantify, design, and fine-tune the dynamic couplings between systems. This research was dedicated to a high-performance academic building (HPAB) – one of the above three buildings – as a case-study to gain understanding on the complexities of systems coupling, and learn and apply dynamic simulation-based systems coupling tools and methods. The main focus of the study is the classrooms because of the existing evidence on the significant impact of indoor environmental comfort on student performance in academic facilities. The HPAB case-study building incorporates, at the source side, ground-coupled water-to-water heat pumps (WWHP) and solar-thermal as primary means of heating, with boiler used as a backup source. Cooling is provided by the cold side of the WWHP system. On the demand side, heating and cooling are delivered via thermally active radiant floors; while air handling systems take care of the ventilation and de/humidification needs, and provide supplementary heating and cooling. The building was initially designed to rely on natural ventilation for summer cooling; however, designers realized that natural ventilation alone was not able to meet the building cooling demands in the summer. Nevertheless, the building has operable windows and a central atrium that seems to be collecting the air from the individual spaces and exhausting it after some heat recovery. The thermally active building is not adequately meeting the demands from some critical zones. Furthermore, the operation is not consistent with the reduced hours of summer operation of an academic building. These and other observations on the building indicate that the air and radiant systems are not operating in synergy. Existing industry practices in building controls systems, and the research literature show limited evidence of efforts to attempt to harmonize these two complementary systems. Simulation was used to re-create the HPAB building’s mechanical system response in two levels: a classroom-level model, and a Whole Building Energy Model (WBEM). The implementation was in EnergyPlus modeling software. Design documents, and historic operational data from the building automation system (BAS) were used for calibration. In this work, various features of Energy Management System (EMS) module of EnergyPlus has been utilized to create a responsive mechanical system control within the simulation. In the end, the typical responses of the building spaces could be accurately recreated in the simulation for both models. In the next step, testing different controls approaches – labelled as Strategies – and comparing them with defined comfort and stability metrics showed that harmonizing the air and radiant systems, in addition to increasing the consistency of the radiant system operation, results in improvement to the system operation without sacrificing the comfort. This research explores the challenges of employing a WBEM to assist building design decisions by accounting for the building dynamics and enabling the coupling and tuning of systems parameters and control strategies through simulation. The research demonstrates the benefits of improved operational control sequences that are more in tune with the building’s design intent.
Experimental investigation of residential building heating and ventilation systems performance
The building sector is one of the most dynamically evolving field with an expectation to provide comfortable, clean and healthy indoor environment with less energy consumption. This acceptable indoor condition is created with a combination of heating/cooling systems and ventilation strategies. There are various systems available, which can deliver heating/cooling as well as ventilation to a dwelling space. These systems involve different heat transfer mechanisms and ventilation strategies: as a result, their performance would be different. Accordingly, the performance of these systems would affect indoor conditions. The process of providing an acceptable indoor environment with minimized energy use can be challenging. In addition to that, there is also a keen interest to reduce the current trend of the building energy consumption as low as possible without affecting the required, comfortable indoor environment. Therefore, the requirement of comprehensive field research that studies and compares most of currently available space heating systems, as well as ventilation strategies, is highly vital to provide information about their actual and relative performance in a real scenario. This research project conducts a field experiment that studies, heating systems, ventilation strategies, and ventilation flow rates. The first part is done by running two different heating systems at a time out of four heating systems (electrical baseboard heater, portable radiator heater, heat pump, and Radiant floor heating systems) in identical full-scale test building with similar ventilation strategy and similar ventilation flow rate. Whereas, the second group of experiments compare two ventilation strategies (mixed ventilation and underfloor ventilation) inside two test buildings with similar heating systems and ventilation flow rate. The third group of comparison compares three ventilation flow rates (15 cfm, 7.5 cfm, and 5 cfm) in the test buildings with similar heating systems and ventilation strategies. Various indicators and indoor environmental elements are used to conduct the comparisons. In the first case where heating systems are compared, the thermal energy provide by the systems are used for comparison. In addition, the thermal comfort, local thermal discomfort, temperature distribution and RH distribution are used to assess and compare the indoor environment produced by the systems. Whereas, the ventilation strategies are compared using indoor environmental element (temperature, relative humidity, CO2, and air velocity) distributions. Finally, the comparison of ventilation flow rates is performed using contaminant removal effectiveness, indoor air quality number, and indoor environmental element distributions. The findings from the experiments indicate that all of the heating systems provide similar daily thermal energy between 10 kWh and 14 kWh based on the outdoor weather condition. In addition, all of the heating systems produce a thermally comfortable indoor environment for standing person. Whereas, the ventilation strategies comparison shows that mixed ventilation strategy performance is slightly better than an underfloor Ventilation strategy by creating marginally uniform CO2 and RH distribution. Moreover, the results of the ventilation flow rates comparison show that the temperature and air velocity distribution find similar while using all the three ventilation flow rates. But the higher ventilation flow rate removes relatively more RH and CO2 in comparison to the lower one. Accordingly, the higher ventilation flow rates depict higher contaminant removal rate and high indoor air quality number relative to lower ventilation flow rate., Ventilation Effectiveness, Ventilation Flow Rate, Indoor Air Quality Number, Thermal Energy, Portable Radiator Heater
The effect of mowing and hand removal on the regrowth rate of Himalayan blackberry (Rubus armeniacus)
Himalayan blackberry (Rubus armeniacus Focke) is an invasive species in the Pacific Northwest. Mowing and hand removal are two of the common treatments used for controlling Himalayan blackberry. I examined the effectiveness of mowing, hand removal, and control treatments by measuring the mean number of stem and mean stem length during a growing season. Treatments were applied on March 2017. Bi-weekly sampling was from April to August 2017. Data were analyzed with a two-factor split-plot Analysis of Variance (ANOVA) test. The overall trend showed no statistically significant difference between mowing and hand removal treatments in one growing season. Integrated treatments (e.g. mowing + hand removal + planting) are recommended to be used to effectively reduce Himalayan blackberry cover because one removal treatment showed to be insufficient to eliminate Himalayan blackberry., Himalayan blackberry
Restoration of old forest characteristics in a 1957 spacing trial in the Malcolm Knapp Research Forest, British Columbia
Forest managers are interested in determining how stands that have been logged might be managed to restore features characteristic of forests in later-stages of development. Incorporating forest restoration into forest management enables the use of forest-management skills, such as silviculture and regeneration techniques, to manage individual stands for multiple objectives. Therefore, I performed a comparative analysis of large trees, very-large trees, large snags, very-large snags, and large CWD among three stand types (i.e., 60-yr-managed, 140-yr-natural, and 500-yr-natural stands). The 140-yr-natural and 500-yr-natural stands were used as reference conditions to guide the restoration of a 59-yr-managed spacing trial. All attributes differed among stand-types; however, large snags were the most similar attribute between 140-yr-natural and 500-yr-natural stands. Large trees were the fastest attribute to recover in 60-yr-managed stands, however mean values among stand-types still differed. This study highlights the potential of restoring old-natural attributes in younger-managed stands to increase ecological resiliency., forest, natural, managed, prescription, restoration, old-natural attributes
Experimental investigation of living architecture design tools to attenuate rooftop noise
The aim of this research is to investigate the viability of designing urban rooftop soundscapes. The prerequisite is to reduce the sound propagation from road traffic by introducing living architectural rooftops with various components of sound attenuating technologies. The final goal is to turn unused rooftop space into a livable urban green space, where soundscape is balanced, and sound energy is reduced to the limits recommended by the World Health Organization (WHO). The first part of this research is to identify the potential of living architectural technologies to attenuate noise from road traffic. More than 33 measurements are performed of living architecture design tools, such as green roofs, berms at edge, living wall barriers and overhangs, to investigate the behavior of sound attenuation in an anechoic chamber and in ODEON, a computer simulation software. The second part of this research is to use the findings on the proposed design tools for an architectural case study, a flat-roof five-storey building located on East Hastings Street. The use of a combination of green roof, berm, overhang, guard and living wall can reduced urban traffic noise from 70 dBA on the roof to 55 dBA, creating additional acoustically healthy habitable space in the urban environment.

Pages