BCIT Thesis and other Required Graduate Degree Works | BCIT Institutional Repository

BCIT Thesis and other Required Graduate Degree Works

Pages

Field investigation of moisture buffering potential of gypsum board in a residential setting under varying operating conditions in a marine climate
Indoor relative humidity is of critical importance to maintain at acceptable and stable levels for building occupants’ health and comfort, energy efficiency, and building envelope durability. The main factors that determine the indoor relative humidity levels in a building are ventilation rate and scheme, moisture sources and sinks, and moisture buffering effect of materials. As buildings enclosures are retrofitted for improvements in water shedding and energy performance, they are becoming more airtight. Such a retrofit measure without addressing increased ventilation needs will lead to significant building envelope and indoor air quality problems. In this thesis, this point is highlighted in a reference residential building, occupied by low-income, high occupancy residents. This research aims to determine the effect of moisture buffering of unfinished gypsum board as a passive means to regulate indoor humidity in a field experiment setting. Two identical test buildings exposed to real climatic loads are used to evaluate the moisture buffering effect of gypsum board for different simulated occupant densities and ventilation strategies. The effect of passive and active indoor moisture management measures are compared between 8 test cases. Implications on indoor air quality and ventilation heat loss are also discussed. The results show that moisture buffering is an effective means of passively regulating indoor relative humidity levels in Vancouver’s marine climate, when coupled with adequate ventilation as recommended by ASHRAE, even under high moisture loading. When working in tandem with adequate ventilation, moisture buffering helps to regulate changes in relative humidity levels by reducing humidity peaks. This in effect decreases dew point temperatures, and the likelihood of condensation and microbial growth. 4 ventilation schemes are provided as active measures to manage indoor moisture coupled with moisture buffering in the field experiment. The results show competing benefits when it comes to managing indoor air quality, indoor humidity, and minimizing ventilation heat loss. Time-controlled ventilation is effective at maintaining relative humidity at acceptable levels for thermal comfort. Time-controlled ventilation also provides considerable savings in ventilation heat losses of 20% in comparison to constant ventilation. However, CO2 levels are exceeded beyond what is acceptable for good indoor air quality for 50% of the monitoring period. Conversely, demand-controlled ventilation schemes produce favourable indoor air quality based on CO2 levels, while compromising indoor humidity levels.
Assessment of natural ventilation using whole building simulation methodological framework
Natural ventilation is a passive alternative to provide both indoor air quality and thermal comfort for the building’s occupants with low energy use. But at the same time, it is challenging for the building designers to implement natural ventilation strategies due to its complexity and highly dynamic behaviour, especially when it is compared with the mechanically ventilated buildings. Nevertheless, the use of naturally ventilated buildings is increasing along with the use of passive strategies, but depending on the complexity of the project, the designer still use rules of thumb for the implementation of natural ventilation strategies instead of a more comprehensive simulation-based approach. In theory, whole building simulation models (WBSM) are becoming viable tools to support natural ventilation design, particularly in the early stages of the project where the impacts of measures to implement a natural ventilation strategy are magnified. However, the only “evidence” of such level of support comes from individual case-study projects. Nevertheless, there is a lack of validation through measurement of the effectiveness of natural ventilation design in real buildings. This research will shed light into the “inner-workings” of natural ventilation models in WBSM to answer fundamental questions such as the following: How is wind data processed? How are envelope openings characterized? How are internal openings modelled? When and how is air buoyancy modelled in spaces? How are the coupled thermal and fluid mass transfers modelled to reflect the dynamic thermal responses of constructions and airflows? Therefore, a methodological framework is developed in order to provide the necessary knowledge for natural ventilation assessment. This framework is based on simulation (WBSM) and field testing. The proposed framework is tested in an existing landmark building in Vancouver. A WBSM of that building is developed, calibrated, and used to analyze how different factors that compose an integrated natural ventilation strategy (like the building shape, window shading, thermal mass, indoor spaces functionality and connectivity, and local climate) influence the thermal comfort of its occupants., Natural ventilation, Thermal comfort, Adaptive model, Whole building simulation models (WBSM)
Assessment of natural ventilation design and efficacy in a net-zero energy house
Achieving acceptable indoor environmental quality and thermal comfort in buildings can be difficult without relying on energy intensive mechanical equipment. When the climate conditions permit, natural ventilation could potentially help minimize the reliance on mechanically conditioned air; however, natural ventilation is rarely engineered. Houses are typically designed as fully enclosed climate systems in which the connection with the outdoor environment is rarely planned. Unlike in commercial or specialized buildings, houses are not designed with many energy conservation measures in mind. Reconnecting them with the outdoors has a great potential to increase thermal comfort and reduce reliance on mechanical systems. With such a connection to the dynamic weather conditions of the outdoors, it is difficult for architects to choose beneficial design elements to be included in the construction of their houses. Knowing which elements work and to what extent under particular conditions can potentially achieve increased thermal comfort using little or no energy. This research aims to offer a thorough assessment of a case study house and determine the effects of the design choices made by the architect of the house. This research may help architects know the risk factors affecting natural ventilation design in a systematic manner; and in doing so, enable quantifying the benefits of natural ventilation to meet the design goals of maintaining satisfactory indoor conditions without the use of air conditioning, particularly in the summer. A constructed net-zero case study house located in the Pacific marine climate of Canada was used to develop the proposed research. The house had been designed by an architect to rely solely on natural ventilation for cooling during the summer and much of the spring and fall. The house was instrumented and its indoor environment was monitored for a period of several months in 2014 to collect data to evaluate the effectiveness of design choices made, including the effect of a large atrium and the air flow characteristics of the windows intended by the architect to deliver most of the ventilation. Recorded data showed the house performed commendably and this was confirmed through evidence from the home owners. To aid in the understanding of the dynamics of the Harmony House, whole-building, multizone air flow network modeling and computational fluid dynamics (CFD) modeling of the house was developed and calibrated with monitored data and testing. The models were used to assess the indoor air quality and further quantify the natural ventilation of the house, as well as test hypothetical situations that were once considered for the house. Simulations revealed some additional insight into the design choices that were implemented in the house and showed that further technologies intended to increase ventilation were unnecessary and some instead, reduced ventilation through the house.
Evaluating stream degradation in Villa De Allende, Mexico
I examined the anthropogenic effects on the water quality of headwater streams in the western mountains of the state of Mexico. Rural development has negative effects on the ecology of local streams by diverting and pumping surface and groundwater, removing riparian forests for the construction of buildings, roads, and agricultural fields, and dumping refuse in stream channels. Local development, construction, roads, and agriculture also are sources of pollution that enter the streams during rain events. These negative ecological effects are common to many streams in the watershed of the Chilesdo dam. The combined effects of human development negatively affect the quality of surface water and groundwater aquifers. The issue of anthropogenic effects on the water quality of headwater streams is relevant ecologically because of likely effects on flora and fauna that depend on these streams and because of the role of headwater streams in the context of the larger watershed. Effects on upstream areas directly affect people, animals, and plants downstream. This issue is relevant economically because rural communities depend on the availability of water of suitable quality for agriculture and livestock. In addition, local water quality directly affects the cost of water purification downstream at dams that feed the Cutzamala system, a major source of Mexico City’s drinking water. This issue is relevant socially because the local community depends on this water for domestic consumption. Compromising water quality and abundance could destabilize the lives of local people because poor water quality and water contamination are a public health concern. Additionally, climate change is likely to make this resource scarcer. Projections for all major scenarios used by the International Panel on Climate Change indicate elevated year-round temperatures and decreased overall precipitation in the region (IPCC 2013). I addressed concerns over water quality by testing differences among streams with anthropogenic alterations and a stream that had few anthropogenic alterations. I sampled benthic macro-invertebrate communities as indicators of water quality within the streams. Benthic invertebrates are a useful bio-indicator for water quality and environmental disturbances in river systems because different taxonomic groups of invertebrates have different tolerances to water pollution. I measured the abundance and taxonomic richness of invertebrates that exhibit different sensitivities to water quality. My results revealed that taxonomic richness was lower in streams that had anthropogenic alterations. My results also revealed that the abundance of “sensitive” and “somewhat sensitive species” were lower and that the abundance of “pollution-tolerant species” was higher in streams with anthropogenic alterations. The stream with few anthropogenic alterations had the highest taxonomic richness and largest number of sensitive and somewhat sensitive species. These results indicate that human activities are having negative effects on water quality. Given my results, I suggest that restoration of degraded streams should reduce water diversion, riparian encroachment, and refuse disposal. I propose solutions to guide these restoration efforts. My data suggests that a coordinated local and regional effort is required to reduce the negative effects of human development and to restore local streams to an ecological condition that will sustain water quality and quantity to enable local communities and the local environment to thrive.
A field study on quality of three First Nation homes on the Squamish Urban Reserve of West Vancouver
Three new homes in the First Nations Squamish urban reserve were instrumented, tested, and monitored for a period of one year. Performance data was obtained from these homes and analyzed to help assess their quality and improve their performance. From the field study, the houses performed reasonably well. However, there is large room for improvements. Considering construction durability, the built-in moisture in the houses dried well. However, as expected, the moisture in the attics was high and improvements are recommended. The monitoring also confirmed that north facing walls take more time to dry and remain wet in some areas, despite the fact that the monitored year was one of the driest years in record, as reported by Environment Canada. Dangerously high moisture levels were also recorded in a few wall locations, believed to be caused by construction deficiencies at window sills and wall penetrations. In general, wall orientation and obstructions to solar radiation play a major role in the moisture balance of walls. This study confirmed that north-facing walls have higher moisture content, which also takes longer to dry out. South-facing and east-facing walls have lower moisture content (i.e. due to higher solar radiation and higher wall temperature to promote evaporation). The effect of external obstructions (i.e. large trees) to solar radiation was seen in the high moisture content of the west walls that was close to that of north walls. However, as reported in this study, poor construction detailing overpowers orientation on impacting wall moisture, and is the major source of concern for rain penetration. Unfortunately, wood-frame construction is unforgiving to construction deficiencies, and maximum care must be exercised to protect all details and wall penetrations from rain. Considering the indoor environment, in general the conditions were within acceptable limits; however, indoor conditions are greatly affected by occupants’ behaviours (e.g. opening windows in cold days). Particular problems arising from tobacco smoking and wood carving could not be measured. From the field study and computer simulations, it is recommended to make the houses more airtight to improve durability, energy efficiency, and possibly indoor air quality. It is also recommended to decouple the ventilation system from the house heating system to improve its ventilation reliability., Monitoring First Nation homes, Indoor air quality and energy efficiency, CO2 contaminant dispersion models, Ventilation
The effect of mowing and hand removal on the regrowth rate of Himalayan blackberry (Rubus armeniacus)
Himalayan blackberry (Rubus armeniacus Focke) is an invasive species in the Pacific Northwest. Mowing and hand removal are two of the common treatments used for controlling Himalayan blackberry. I examined the effectiveness of mowing, hand removal, and control treatments by measuring the mean number of stem and mean stem length during a growing season. Treatments were applied on March 2017. Bi-weekly sampling was from April to August 2017. Data were analyzed with a two-factor split-plot Analysis of Variance (ANOVA) test. The overall trend showed no statistically significant difference between mowing and hand removal treatments in one growing season. Integrated treatments (e.g. mowing + hand removal + planting) are recommended to be used to effectively reduce Himalayan blackberry cover because one removal treatment showed to be insufficient to eliminate Himalayan blackberry., Himalayan blackberry
Restoration of old forest characteristics in a 1957 spacing trial in the Malcolm Knapp Research Forest, British Columbia
Forest managers are interested in determining how stands that have been logged might be managed to restore features characteristic of forests in later-stages of development. Incorporating forest restoration into forest management enables the use of forest-management skills, such as silviculture and regeneration techniques, to manage individual stands for multiple objectives. Therefore, I performed a comparative analysis of large trees, very-large trees, large snags, very-large snags, and large CWD among three stand types (i.e., 60-yr-managed, 140-yr-natural, and 500-yr-natural stands). The 140-yr-natural and 500-yr-natural stands were used as reference conditions to guide the restoration of a 59-yr-managed spacing trial. All attributes differed among stand-types; however, large snags were the most similar attribute between 140-yr-natural and 500-yr-natural stands. Large trees were the fastest attribute to recover in 60-yr-managed stands, however mean values among stand-types still differed. This study highlights the potential of restoring old-natural attributes in younger-managed stands to increase ecological resiliency., forest, natural, managed, prescription, restoration, old-natural attributes
Multi-objective optimization of high performance residential buildings using a genetic algorithm
Traditional methods of design and construction of residential buildings are common practice, and in most cases, are required by building codes. However, these design practices do not necessarily yield the most optimized designs in terms of cost, environmental impact, and occupant thermal comfort. Typically, the owner or investor hires an architect that designs the building based on the client’s requirements, and then technical designs, such as enclosure and HVAC systems, are tasked to construction and mechanical engineers to satisfy the original design without consideration to energy consumption and environmental impacts. Those who are energy and environmentally conscious rely on an iterative trial and error method using energy simulation tools, and this method consumes much time and resources. To address this problem, this research presents the development and implementation of a simulation-based optimization tool that relies on a genetic algorithm to systematically improve the building design at a conceptual stage based on a set of objective functions. For the purpose of this research, the objective functions include the life-cycle costs, life-cycle global warming potential, and occupant thermal comfort. More specifically, occupant thermal comfort (measured in PPD) acts that the constraint objective. In this study, a multi-objective optimization genetic algorithm was implemented to find optimal residential building enclosure assemblies that minimizes the life-cycle costs, life-cycle global warming potential, and keeps occupant thermal comfort within check. Based on the design variables and objective functions, a software tool consisting of four modules is used for optimization: the input and input parameter database files; the genetic algorithm optimization software (jEPlus+EA); the energy simulation program (EnergyPlus) and the optimized output files. All required software and simulation programs can be acquired free of charge from the internet, with the exception of proprietary database files such as material and construction assembly libraries. For validation, the optimization tool is implemented on a benchmark study, which demonstrates its application and capabilities. The benchmark study is based on ANSI/ASHRAE Standard 140-2001 BESTEST calibration and validation test case 600. The optimization results in multiple Pareto optimal solutions that gives the user a detailed look at the trade-off between the objective functions when high performance building systems are used. The optimization tool is then applied to a case study where an actual single family home (Harmony House) is modeled and important building design parameters are identified and discussed., Multi-objective building optimization, Life Cycle Cost Analysis (LCCA), Life Cycle Environmental Assessment (LCEA), Green buildings, Building assessment methods
Evaluation of educational-software and paper-based resources for teaching logical-thinking skills to grade six and seven students
Guided by the objectives of investigating whether there were any differences between the effectiveness of the paper-based materials and educational software in teaching logical-thinking skills and transferring those skills to new problems and determining the efficacy of the paper-based materials and educational software in teaching logical-thinking skills and transferring those skills to new problems, a mixed-method research approach was used. A qualitative assessment was conducted to ascertain the appropriateness of the materials and a quantitative assessment was done using a pre-test, post-test, experimental design to assess the effectiveness of the materials in teaching logical-thinking skills. Based on the qualitative analysis, after the initial materials were modified through the information gained from the pilot students and changes were put in as suggested by the reviewers through their iterative reviews of the materials, it was determined that the reviewers considered that the events of instruction addressed in this intervention (gaining attention, informing the learner of the learning outcome, presenting the material, providing learning guidance, eliciting the performance, providing feedback, assessing performance, and enhancing retention and transfer) provided the attributes needed to effectively teach the logical-thinking skills of classification, analogical reasoning, sequencing, patterning, and deductive reasoning. For the quantitative analysis, one-way ANOVAs were performed to compare an experimental group learning from educational software (32 students), an experimental group learning from paper-based materials (32 students), and a control group (32 students). Given significance was found between the groups, Tukey HSD Post Hoc Tests were done. For each test, the subjects taught through educational software and those taught through paper-based materials scored significantly higher in logical-thinking ability than the control group, except for the subskills of patterning and deductive reasoning for the subjects learning through educational software, and the skill of deductive reasoning for the subjects learning through paper-based materials. For the transfer learning scores, the subjects learning through paper-based materials scored significantly higher than the control group. There were no significant differences between subjects taught through paper-based materials and those taught through educational software on any test. Based on paired samples t-test results, the subjects learning from educational software and those learning from paper-based materials had significant percentage gains on all of their pre-test to post-test scores, except the subjects learning through paper-based materials showed no significant gains on the sequencing and deductive-reasoning skills., Logical thinking, Instructional design, Qualitative analysis, Quantitative analysis
Model-based coupling of air and hydronic system operation in a high performance academic building
This research is motivated from preliminary teamwork on analyzing the “Performance Gap” of three high-performance buildings, which are currently under operation. All three buildings are facing operational challenges that are not unusual considering the complexity of their systems. However, evidence from design documents, an existing energy model, and operational data suggests that their performance is not entirely reflecting the design intent. This research follows the premise that there is a need to design buildings as systems-of-systems to be able to understand, interpret, quantify, design, and fine-tune the dynamic couplings between systems. This research was dedicated to a high-performance academic building (HPAB) – one of the above three buildings – as a case-study to gain understanding on the complexities of systems coupling, and learn and apply dynamic simulation-based systems coupling tools and methods. The main focus of the study is the classrooms because of the existing evidence on the significant impact of indoor environmental comfort on student performance in academic facilities. The HPAB case-study building incorporates, at the source side, ground-coupled water-to-water heat pumps (WWHP) and solar-thermal as primary means of heating, with boiler used as a backup source. Cooling is provided by the cold side of the WWHP system. On the demand side, heating and cooling are delivered via thermally active radiant floors; while air handling systems take care of the ventilation and de/humidification needs, and provide supplementary heating and cooling. The building was initially designed to rely on natural ventilation for summer cooling; however, designers realized that natural ventilation alone was not able to meet the building cooling demands in the summer. Nevertheless, the building has operable windows and a central atrium that seems to be collecting the air from the individual spaces and exhausting it after some heat recovery. The thermally active building is not adequately meeting the demands from some critical zones. Furthermore, the operation is not consistent with the reduced hours of summer operation of an academic building. These and other observations on the building indicate that the air and radiant systems are not operating in synergy. Existing industry practices in building controls systems, and the research literature show limited evidence of efforts to attempt to harmonize these two complementary systems. Simulation was used to re-create the HPAB building’s mechanical system response in two levels: a classroom-level model, and a Whole Building Energy Model (WBEM). The implementation was in EnergyPlus modeling software. Design documents, and historic operational data from the building automation system (BAS) were used for calibration. In this work, various features of Energy Management System (EMS) module of EnergyPlus has been utilized to create a responsive mechanical system control within the simulation. In the end, the typical responses of the building spaces could be accurately recreated in the simulation for both models. In the next step, testing different controls approaches – labelled as Strategies – and comparing them with defined comfort and stability metrics showed that harmonizing the air and radiant systems, in addition to increasing the consistency of the radiant system operation, results in improvement to the system operation without sacrificing the comfort. This research explores the challenges of employing a WBEM to assist building design decisions by accounting for the building dynamics and enabling the coupling and tuning of systems parameters and control strategies through simulation. The research demonstrates the benefits of improved operational control sequences that are more in tune with the building’s design intent.
Sound living in Vancouver's laneway housing
Laneway housing is an innovative higher density housing form introduced to meet the City of Vancouver’s EcoDensity Charter. This form of residential occupancy was introduced without specific acoustical standards for construction. Noise concerns generally accompany increasing urban density, particularly in housing located close to transportation and activity centers. Laneways and laneway housing have environmental and architectural features that can contribute to noise levels exceeding criteria for healthy living. To advance the state of practice, this research first explores the sonic environment of laneways, including sound propagation, urban canyon effects, and sound sources. Second, this research investigates the acoustics of the laneway house, including outdoor-indoor sound insulation of facades, architectural features, and floor plan layout in relation to environmental noise sources. Empirical field measurements, the CMHC road traffic noise model and software modelling programs are used to investigate the acoustical environmental quality of laneway housing. Findings from case study investigation of four laneways and six laneway houses are evaluated against the CMHC noise criteria for healthy living. The various research tools are evaluated for accuracy and practicality as acoustic design tools for Vancouver laneways and laneway housing. The results of this study can inform laneway development planning (including benefits of laneway vegetation), laneway house design, building envelope construction, and policy guidelines as the City of Vancouver continues in its plans for sustainable densification., Acoustics of small buildings, Urban canyon effect, Road traffic noise, Laneway house acoustics
Eco-cultural restoration of wetlands at Tl’chés (Chatham Islands), British Columbia, Canada
My research project examined the restoration possibilities for two culturally important wetland ecosystems at Tl’chés (Chatham Islands, British Columbia, Canada). The first wetland is a sacred bathing pool and holds cultural significance, the second is a remnant silverweed and springbank clover (Potentilla anserine ssp. pacifica and Trifollium wormskjoldii) root garden. These wetlands are necessary ecosystems for the wildlife on Tl’chés as wetlands are rare, but also an integral part of Songhees’ cultural practices. My work was done at the invitation from elder Súlhlima (Joan Morris) who was one of the last resident of the islands and retains hereditary rights there, and Songhees Chief Ron Sam and band council. The goal of my project was to develop a restoration plan to restore the wetlands to pre-abandonment conditions, so cultural practices can continue, and to benefit the islands native plant and animal species. The project highlights the value of combining traditional ecological knowledge (TEK) and traditional resource and environmental management (TREM) practices with ecological restoration., Eco-cultural restoration, wetland ecosystems, traditional ecological knowledge (TEK), traditional resource and environmental management (TREM), estuarine root gardens, Songhees First Nation

Pages