Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Alaksen National Wildlife Area: Reservoir suitability for the introduction of the endangered Western Painted Turtle
Alaksen National Wildlife Area located in Delta, BC is home to freshwater species in the former tidal marsh. The current agricultural landscape has left a legacy of high concentrations of heavy metals, trace amounts of organochlorine pesticides, and excess nutrients within the sediments and water of the brackish Fuller and Ewen Reservoirs. Arsenic and phosphorous exceeded Canadian water quality guidelines, while arsenic, chromium, copper, iron, manganese, nickel, and phosphorus exceeded sediment quality guidelines. There were trace pesticides known to be endocrine disrupters detected in the water and sediment, and combined low level toxicity effects are a concern. A preliminary ecological risk assessment on the metals was completed and the results indicate that there is a possibility of adverse effects for benthic invertebrates, but negligible risk for endangered Western Painted Turtles. However, compounding all the ecosystem stressors along with rising sea levels leads ANWA not an ideal place to introduce this species., © Darian Weber, 2019. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Western Painted turtles, ecotoxicology, risk assessment, agricultural reservoir, heavy metal, endocrine disruptors
Assessing the allelopathic effect of invasive phragmites australis on sida hermaphrodita and ammannia robusta; two species at risk in Southern Ontario
In Ontario, invasive Phragmites australis threatens to displace many species including the endangered species Sida hermaphrodita and Ammannia robusta. Germination and growth assays measured the effect of P. australis aqueous extracts from the leaves, rhizomes, and roots on S. hermaphrodita and A. robusta. Germination was inhibited by some of the treatments, but growth was not. The tissues inhibited germination differently for S. hermaphrodita (leaf> rhizome> root) compared to A. robusta (root> rhizome> leaf) indicating that the allelopathic effect was species-specific. However, the laboratory results show that allelopathic effects are weak. This result is consistent to the field study results showing an increase in S. hermaphrodita area and density over time. Results from this project inform management options by indicating which part of the plant needs to be targeted. In this case, all the tissues had some phytotoxic effects, indicating that biomass may need to be removed or long-term management implemented., Invasive Species, Species at Risk, Seed Germination, Seedling Growth, Allelopathy
Comparing soil nematode composition in bluebunch wheatgrass P. spicata root to the occurrence of invasive plants C. stoebe and L. dalmatica
The viability of native bunchgrass ecosystems throughout the PPxh BEC subzone and in Kenna Cartwright Park (KCP) in Kamloops B.C. are under threat by invasive plants. Once established, invasive plants are difficult to eradicate and can predominate the landscape. I collected soil samples from a relatively undisturbed bunchgrass reference site composed of native bluebunch wheatgrass (Pseudoroegneria spicata), and I collected soil samples from a bunchgrass site occupied by the invasive plants, spotted knapweed (Centaurea stoebe) and dalmatian toadflax (Linaria dalmatica), to compare the soil nematode communities. My results reveal differences in the community-level biodiversity and abundance of soil nematodes between sites. The Maturity Index and the Plant Parasitic Index indicate that the native bunchgrass site had a “Structured” soil food web and that the site occupied by invasive plants had a “Basal” soil food web. My results indicate soil nematodes are useful as bioindicators of soil properties and these data provide useful criteria to help prioritize sites for ecological restoration., Nematology, Invasive plants, Pseudoroegneria spicata, Biological indicators, Ecological restoration
Eco-cultural restoration of wetlands at Tl’chés (Chatham Islands), British Columbia, Canada
My research project examined the restoration possibilities for two culturally important wetland ecosystems at Tl’chés (Chatham Islands, British Columbia, Canada). The first wetland is a sacred bathing pool and holds cultural significance, the second is a remnant silverweed and springbank clover (Potentilla anserine ssp. pacifica and Trifollium wormskjoldii) root garden. These wetlands are necessary ecosystems for the wildlife on Tl’chés as wetlands are rare, but also an integral part of Songhees’ cultural practices. My work was done at the invitation from elder Súlhlima (Joan Morris) who was one of the last resident of the islands and retains hereditary rights there, and Songhees Chief Ron Sam and band council. The goal of my project was to develop a restoration plan to restore the wetlands to pre-abandonment conditions, so cultural practices can continue, and to benefit the islands native plant and animal species. The project highlights the value of combining traditional ecological knowledge (TEK) and traditional resource and environmental management (TREM) practices with ecological restoration., Eco-cultural restoration, wetland ecosystems, traditional ecological knowledge (TEK), traditional resource and environmental management (TREM), estuarine root gardens, Songhees First Nation
Ecocultural restoration of a Coastal Root Garden on Tl’chés (Chatham Island), B.C.
Tl’chés is the Lekwungen name for the Chatham Islands — an archipelago located southeast of Victoria, British Columbia. Tl’chés is a central place in the traditional territory of the Lekwungen peoples, and today it is reserve land of the Songhees First Nation. This landscape was traditionally managed by prescribed burning and the cultivation of native plants. However, in the early 1950's, Lekwungen peoples left the archipelago, due to a lack of potable water and since then, the landscape has degraded drastically. The introduction of non-native plants has resulted in threats to the ecological, cultural resilience, and diversity of the landscape. My research focuses on developing a restoration plan for springbank clover in the coastal root garden. My restoration approach focuses on incorporating a Songhees-informed approach to restoration by integrating past practices and knowledge with the aim of answering: how to best restore the springbank clover population on Tl’chés?, Eco-cultural restoration, coastal root gardens, traditional ecological knowledge (TEK), Songhees First Nation, cultural keystone place (CPK)
The effect of mowing and hand removal on the regrowth rate of Himalayan blackberry (Rubus armeniacus)
Himalayan blackberry (Rubus armeniacus Focke) is an invasive species in the Pacific Northwest. Mowing and hand removal are two of the common treatments used for controlling Himalayan blackberry. I examined the effectiveness of mowing, hand removal, and control treatments by measuring the mean number of stem and mean stem length during a growing season. Treatments were applied on March 2017. Bi-weekly sampling was from April to August 2017. Data were analyzed with a two-factor split-plot Analysis of Variance (ANOVA) test. The overall trend showed no statistically significant difference between mowing and hand removal treatments in one growing season. Integrated treatments (e.g. mowing + hand removal + planting) are recommended to be used to effectively reduce Himalayan blackberry cover because one removal treatment showed to be insufficient to eliminate Himalayan blackberry., Himalayan blackberry
The effects of canopy closure on precipitation throughfall
Since the 1860s the watershed of Spanish Bank Creek has experienced many ecological disturbances due to extensive old-growth logging and urban development. Most notably, these disturbances have altered the vegetative composition and hydrology throughout the watershed. The historic old-growth forest has been replaced by species typical of earlier seral stages, as well as invasive species such as English ivy (Hedera helix). This disturbed vegetation mosaic is characterized by an arrested ecological trajectory that perpetuates degraded conditions. Urban development has eliminated over a third of the historic length of Spanish Bank Creek and storm drains were installed to direct residential drainage into the stream. The combination of a disturbed forest and degraded hydrology intensifies runoff and associated sediment transport, and decreases the hydraulic retention time of the watershed. This has led to a significant decline in abundance of chum, coho, and cutthroat salmonids in Spanish Bank Creek. Previous research has established how trees partition precipitation into throughfall, stemflow, and interception, however there are few studies examining the effects of canopy closure on throughfall within the context of ecological restoration. Thus, the objective of this paper is to determine if increasing canopy closure can be used as a restoration model to decrease throughfall, and consequently increase the hydraulic retention time of the watershed. Results indicated that greater canopy closure was associated with decreased precipitation throughfall. From these results I formulated a restoration goal and several treatments that would increase canopy closure, and also ameliorate the degraded vegetative composition and hydrology of the watershed. The restoration treatments prescribed in this paper constitute five years of physical enhancements from which self-sustaining biological processes will continue to restore ecosystem function and structure. Successful implementation of these restoration treatments will positively affect regional biota, as well as users of the Pacific Spirit Regional Park who come to recreate, learn, and connect.
The effects of tree thinning and broadcast burning on the quality of ungulate winter range: a case study within a Southern Interior Forest in British Columbia
Food limitation on ungulate winter range (UWR) has been a suspected factor in the regional declines of Odocoileus hemionus (mule deer) in the Pacific Northwest. Accordingly, enhancing browse resources in this critical habitat is increasingly recommended. At a dry forest site in Southeast B.C. called Fiva Creek (IDF dm1), I investigated the effects of two commonly prescribed methods for enhancing browse production: tree thinning and prescribed burning. Treatments were implemented between 2005–2008 and included three levels of thinning (all burned) and control areas (uncut and unburned). The response variables I measured included browse cover, canopy closure, security cover, visibility, and pellet abundance. I also evaluated browsing pressure on the indicator plant, Saskatoon (Amelanchier alnifolia). Using linear mixed-effects ANOVA tests, I assessed how thinning (with follow-up burning) influenced forest and vegetation properties. There was no evidence of a treatment effect on browse production; however, browsing pressure was very high across the site (i.e., > 80% of A. alnifolia twigs showed evidence of browsing). Additionally, canopy cover was below recommended levels in all thinned treatments. My results suggested that restoration treatments actually diminished the quality of UWR at Fiva Creek. Further investigations are needed to develop effective UWR restoration methods., Mule deer, ungulate winter range, thinning, prescribed fire, restoration ecology
Evaluating stream degradation in Villa De Allende, Mexico
I examined the anthropogenic effects on the water quality of headwater streams in the western mountains of the state of Mexico. Rural development has negative effects on the ecology of local streams by diverting and pumping surface and groundwater, removing riparian forests for the construction of buildings, roads, and agricultural fields, and dumping refuse in stream channels. Local development, construction, roads, and agriculture also are sources of pollution that enter the streams during rain events. These negative ecological effects are common to many streams in the watershed of the Chilesdo dam. The combined effects of human development negatively affect the quality of surface water and groundwater aquifers. The issue of anthropogenic effects on the water quality of headwater streams is relevant ecologically because of likely effects on flora and fauna that depend on these streams and because of the role of headwater streams in the context of the larger watershed. Effects on upstream areas directly affect people, animals, and plants downstream. This issue is relevant economically because rural communities depend on the availability of water of suitable quality for agriculture and livestock. In addition, local water quality directly affects the cost of water purification downstream at dams that feed the Cutzamala system, a major source of Mexico City’s drinking water. This issue is relevant socially because the local community depends on this water for domestic consumption. Compromising water quality and abundance could destabilize the lives of local people because poor water quality and water contamination are a public health concern. Additionally, climate change is likely to make this resource scarcer. Projections for all major scenarios used by the International Panel on Climate Change indicate elevated year-round temperatures and decreased overall precipitation in the region (IPCC 2013). I addressed concerns over water quality by testing differences among streams with anthropogenic alterations and a stream that had few anthropogenic alterations. I sampled benthic macro-invertebrate communities as indicators of water quality within the streams. Benthic invertebrates are a useful bio-indicator for water quality and environmental disturbances in river systems because different taxonomic groups of invertebrates have different tolerances to water pollution. I measured the abundance and taxonomic richness of invertebrates that exhibit different sensitivities to water quality. My results revealed that taxonomic richness was lower in streams that had anthropogenic alterations. My results also revealed that the abundance of “sensitive” and “somewhat sensitive species” were lower and that the abundance of “pollution-tolerant species” was higher in streams with anthropogenic alterations. The stream with few anthropogenic alterations had the highest taxonomic richness and largest number of sensitive and somewhat sensitive species. These results indicate that human activities are having negative effects on water quality. Given my results, I suggest that restoration of degraded streams should reduce water diversion, riparian encroachment, and refuse disposal. I propose solutions to guide these restoration efforts. My data suggests that a coordinated local and regional effort is required to reduce the negative effects of human development and to restore local streams to an ecological condition that will sustain water quality and quantity to enable local communities and the local environment to thrive.
Geochemical and biological response of an intertidal ecosystem to localized restoration efforts
Geochemical and biological attributes of three intertidal areas in the Squamish Estuary with different levels of disturbance (low, medium, and high) were assessed to determine short-­term ecosystem responses to localized restoration efforts conducted one year previously on a former log handing site. Sediment and macroinvertebrate variables were analyzed among sites to characterize the ecosystems response and provide insight on the nature and process of an assisted successional trajectory. Invertebrate composition and biomass were lowest on the site with the highest level of disturbance. The high disturbance site also contained the highest percentage of fine sand (0.0067 mm to 0.25 mm). This confirms that in the short term there are distinct site responses to disturbance and ameliorative restoration efforts – even in a highly dynamic estuarine environment. The medium site contained more invertebrates than the low disturbance site indicating that something other than localized disturbance is affecting the invertebrate community on the low site. All sites exhibited a less-­rich and less diverse invertebrate community than that of historical records (circa. 1970-­1980). Invertebrate community in the east delta today is more typical of estuarine environments with higher salinity levels -­ which indicates more widespread levels of disturbance throughout the Estuary is affecting the study sites. This study highlights the importance of considering temporal and spatial scales when setting restoration goals, objectives and creating monitoring plans. Additional monitoring of sediment, invertebrate, and other variables on restored and reference sites is recommended to characterize typical recolonization and reassembly attributes of restoring intertidal estuaries in coastal British Columbia. This would provide evidence and rigor in determining effective restoration techniques and management strategies for a critical and increasingly threatened ecosystem., Macroinvertebrates, Restoration, Sediment, Benthic ecology, Estuaries, Intertidal flats
Identifying temporal trends and mechanisms for successful reforestation on former agricultural land
This study investigates the outcomes of restoration efforts completed on retired agricultural land in Southwest Ontario. Sites acquired by the Nature Conservancy of Canada were planted to kickstart succession to native deciduous forests, but the results of the plantings are mixed. Analysis of soil conditions indicated that low levels of soil organic carbon were correlated to low water content and high density unfavourable for plant growth. Analysis of remotely sensed imagery was done to assess and compare vegetation cover to reference conditions at Walpole Island First Nation. Analysis revealed that successful restoration was dependent on multiple soil characteristics, but conditions correlated to higher total organic carbon favoured greater vegetation cover. Remote sensing data revealed that succession towards tree canopy development was accelerated compared to passive restoration, and a shaded understory was established approximately 8-12 years following restoration. Future work can expand on succession and the effects of other restoration treatments., Soil, Reforestation, NDVI, Agriculture, Restoration, Secondary succession
Investigating regeneration in a raised ombrotrophic bog after peat extraction
Burns Bog is a raised ombrotrophic bog in Delta, British Columbia and faced with myriad disturbances. This study is focused on the impact and restoration of peat extraction by the Atkins-Durbrow Hydropeat method. Depth to water table, relative abundance and distribution of vegetation, and the degree of peat decomposition at consistent-depth intervals were investigated to elucidate the status of passive and active ecological restoration in three fields previously harvested for peat approximately one decade apart and compared to a fourth unharvested field. Summary statistics, Redundancy Analysis, and regression were used to compare restoration status and trends in hydrology, vegetation composition, and peat accumulation. A lag period between cessation of harvest and implementation of restoration, coupled with rapid anthropogenic climate change, serve as impediments to restoration here. Intervention in the form of improved rainfall retention, assisted recolonization, and the introduction of nurse species are recommended to improve bog function and resiliency., Atkins-Durbrow Hydropeat method, Ditch blocking, Ecological restoration, Peat extraction, Raised ombrotrophic bog, Burns Bog

Pages