Master of Applied Science in Building Science and Master of Engineering in Building Science | BCIT Institutional Repository

Master of Applied Science in Building Science and Master of Engineering in Building Science

Pages

The absorption and scattering characteristics of interior living walls
Installation of interior living walls is increasing rapidly due to their beauty, biophilic design and their potential contribution to indoor environmental quality. However, there is little understanding of the specific effect they have on the acoustics of a room. To advance the state of practice, this interdisciplinary study explores the acoustical characteristics of interior living walls to determine how they can be used to positively benefit room acoustic by reducing excess noise and reverberation. Specifically, the objective of the research is to measure the acoustical characteristics of the interior living wall in order to determine their absorption coefficient, scattering coefficient, and the parameters that most significantly impact these coefficients. First, a series of measurements are carried out in a reverberation chamber to examine random-incidence absorption by considering parameters such as carrier type, moisture content, vegetation type, and substrate. In addition, both absorption and scattering coefficients are examined by considering various vegetation types and coverage. The findings from empirical measurements facilitate a sensitivity analysis, with the use of the commercial software Odeon, of the absorption and scattering coefficients. Next, the empirical absorption and scattering coefficients are used on a model, developed in the commercial software Odeon, to see the effect of interior living walls on room acoustics. The aim of this study is to evaluate the application of interior living walls as a sustainable and acoustically beneficial material for buildings of any kind., Acoustical characteristics of interior living walls, Sound absorption coefficient, Sound scattering coefficient, Odeon software, Room acoustics, Living wall
Analysis of construction site noise from the community perspective
The overall research investigated intrusive noise levels from construction sites into residential communities which may be detrimental to health. This research used the drone imagery of an actual construction project to identify noise sources from the construction site and CadnaA acoustic software to predict the noise propagation from construction sites in three modelled residential communities. Construction noise propagation and community annoyance were modelled for single-family, multifamily, and high-rise residential neighbourhoods where noise levels exceeded the recommendations of the World Health Organization and Health Canada Guidelines. When construction works continue without any noise mitigation measures, one-fourth of resident would have been overexposed according to the City of Vancouver (CoV) guidelines. Several noise control strategies were applied and finding indicated that a combination of noise controls was more effective than a single control measure. When noise mitigations were in place, the City of Vancouver noise by-laws were found to be attainable, and no residents would have been overexposed to construction noise. However, when applying the Health Canada guidelines, which is more stringent than municipality noise by-laws, it was predicted that more than one-third of residents would be overexposed and would experience widespread annoyance with or without mitigation strategies. The understanding of construction noise from the community perspective in this research provides a new perspective for the study of construction noise that can help regulatory entities to reduce community exposure to construction noise and it offers solutions for construction noise-mitigating strategies to be incorporated into urban planning and public health policy.
Assessment of natural ventilation design and efficacy in a net-zero energy house
Achieving acceptable indoor environmental quality and thermal comfort in buildings can be difficult without relying on energy intensive mechanical equipment. When the climate conditions permit, natural ventilation could potentially help minimize the reliance on mechanically conditioned air; however, natural ventilation is rarely engineered. Houses are typically designed as fully enclosed climate systems in which the connection with the outdoor environment is rarely planned. Unlike in commercial or specialized buildings, houses are not designed with many energy conservation measures in mind. Reconnecting them with the outdoors has a great potential to increase thermal comfort and reduce reliance on mechanical systems. With such a connection to the dynamic weather conditions of the outdoors, it is difficult for architects to choose beneficial design elements to be included in the construction of their houses. Knowing which elements work and to what extent under particular conditions can potentially achieve increased thermal comfort using little or no energy. This research aims to offer a thorough assessment of a case study house and determine the effects of the design choices made by the architect of the house. This research may help architects know the risk factors affecting natural ventilation design in a systematic manner; and in doing so, enable quantifying the benefits of natural ventilation to meet the design goals of maintaining satisfactory indoor conditions without the use of air conditioning, particularly in the summer. A constructed net-zero case study house located in the Pacific marine climate of Canada was used to develop the proposed research. The house had been designed by an architect to rely solely on natural ventilation for cooling during the summer and much of the spring and fall. The house was instrumented and its indoor environment was monitored for a period of several months in 2014 to collect data to evaluate the effectiveness of design choices made, including the effect of a large atrium and the air flow characteristics of the windows intended by the architect to deliver most of the ventilation. Recorded data showed the house performed commendably and this was confirmed through evidence from the home owners. To aid in the understanding of the dynamics of the Harmony House, whole-building, multizone air flow network modeling and computational fluid dynamics (CFD) modeling of the house was developed and calibrated with monitored data and testing. The models were used to assess the indoor air quality and further quantify the natural ventilation of the house, as well as test hypothetical situations that were once considered for the house. Simulations revealed some additional insight into the design choices that were implemented in the house and showed that further technologies intended to increase ventilation were unnecessary and some instead, reduced ventilation through the house.
Assessment of natural ventilation using whole building simulation methodological framework
Natural ventilation is a passive alternative to provide both indoor air quality and thermal comfort for the building’s occupants with low energy use. But at the same time, it is challenging for the building designers to implement natural ventilation strategies due to its complexity and highly dynamic behaviour, especially when it is compared with the mechanically ventilated buildings. Nevertheless, the use of naturally ventilated buildings is increasing along with the use of passive strategies, but depending on the complexity of the project, the designer still use rules of thumb for the implementation of natural ventilation strategies instead of a more comprehensive simulation-based approach. In theory, whole building simulation models (WBSM) are becoming viable tools to support natural ventilation design, particularly in the early stages of the project where the impacts of measures to implement a natural ventilation strategy are magnified. However, the only “evidence” of such level of support comes from individual case-study projects. Nevertheless, there is a lack of validation through measurement of the effectiveness of natural ventilation design in real buildings. This research will shed light into the “inner-workings” of natural ventilation models in WBSM to answer fundamental questions such as the following: How is wind data processed? How are envelope openings characterized? How are internal openings modelled? When and how is air buoyancy modelled in spaces? How are the coupled thermal and fluid mass transfers modelled to reflect the dynamic thermal responses of constructions and airflows? Therefore, a methodological framework is developed in order to provide the necessary knowledge for natural ventilation assessment. This framework is based on simulation (WBSM) and field testing. The proposed framework is tested in an existing landmark building in Vancouver. A WBSM of that building is developed, calibrated, and used to analyze how different factors that compose an integrated natural ventilation strategy (like the building shape, window shading, thermal mass, indoor spaces functionality and connectivity, and local climate) influence the thermal comfort of its occupants., Natural ventilation, Thermal comfort, Adaptive model, Whole building simulation models (WBSM)
Development and application of an advanced green roof model
Green roofs are becoming a common application in order to improve building energy performance, runoff water control with several additional environmental benefits. Models are essential in the building science due to a necessity of prediction how different structures perform. This knowledge helps to choose right materials and material dimensions. A green roof structure is a complex system of different layers, including growing media and plants. Those two layers make the green roof modelling entirely different from ordinary modelling. Nowadays, several green roof models cover different phenomena and use different physical principles. However, a green roof model is still can be improved. Therefore, this study develops a green roof model- HAMFit-GR that better covers heat and moisture movement sources. The model is based on Heat-Air-Moisture model called HAMFit and Fast All-Season Soil Strength models from US Army Corps of engineers. A combined model is proposed to be more accurate than the most comprehensive green roof models. The result is achieved by adding uncovered components, such as coupling heat and moisture transport in growing media and runoff water flow. Green roof parameters that are required for accurate modelling are measured through laboratory and field experiments. The benchmark data is obtained from the field experiment that is being performed at Whole Building Performance Research Laboratory (WBPRL) of Building Science Centre of Excellence at British Columbia Institute of Technology (BCIT), Burnaby. A case study is prepared with the validated model. The case study includes analysis of green roof parameters impact on roof hydrothermal performance.
An experimental field study on the thermal & water balance performance of vegetated roof systems
Four roof assemblies were constructed at Helena Gutteridge Plaza in Vancouver, British Columbia, Canada to compare the stormwater management capabilities and relative thermal performance. A conventional, green, blue, and connected blue-green roof were equipped with sensors to record roof temperature profile, runoff, and soil moisture content data from January 2020 until August 2021. The blue and connected roofs had a water cavity of 85mm with wicking fabric to store water. The green and connected roofs had sedum mats as vegetation with 100mm and 75mm of soil respectively. The vegetated roof assemblies lowered the surface temperature by up to 50% during summer compared to the conventional roof’s peak surface temperatures reaching over 60°C. With available water, the green, blue, and connected roof assemblies are able to reduce internal temperatures by up to 4°C in the summer. As long as there is available water for the blue. Green, and connected roof assemblies, they can effectively reduce internal and surface temperatures. Over a period of 2 years, the green roof was able to retain 23.3% of the rainfall while the connected and blue roofs retained 20.2% and 17.3% respectively, compared to the conventional roof. During warmer months between May and September, the connected roof was able to retain 100% of the runoff while its vegetation outlasted the green roof’s vegetation during drought by 3 weeks in 2020 and 2 weeks in 2021. The blue roof retains 96% of rainfall during summer while the green roof retains 91% due its lack of storage compared to the other assemblies. The blue and green roofs were better able to delay the peak flow and reduce it with less overall runoff during winter compared to the connected roof. The vegetation of the connected roof was taller, more vibrant, and had more ecological activity than the green roof and also resulted in a higher saturation moisture content.
Experimental investigation of building envelope integrated ventilative cooling design for high-performance buildings
We are in this new exciting stage of building design and construction stage where we strive to realize net-zero buildings. To get to net zero, the building must produce locally as much energy as it utilizes. Hence, lower energy consumption is required. However, high performance buildings with highly insulated walls usually face an overheating problem in the summertime and end up using more energy for cooling. Literature indicates that natural ventilation for cooling or ventilative cooling method to be an ideal system for energy saving. In this study, naturally ventilating the air gap behind the cladding by the indoor and outdoor air is experimentally investigated for optimization considering energy performance in the summer time and shoulder seasons. The proposed design allows outside air to be pulled into the interior space and the warm indoor air to be exhausted to the outside through the cavity behind the cladding; thereby creating ventilative airflow to cool the building thus named exhaust ventilated (EV) wall design. The major driving force of interest is thermal buoyancy. The experimental study also includes optimizing ventilated cladding (VC) wall setup, a variation of the rainscreen wall system. The performance of the different variations of the two wall design is compared based on their potential to reduce the cooling load or overheating of a building. From the experimental data analysis, A VC wall of 6" (15 cm) cavity depth and opaque cladding showed a 40% reduction in heat gain compared to a commonly used ventilated rainscreen wall indicating a wider cavity perfo1ms better. Similarly, the opaque cladding is also shown to be better than the transparent cladding in cooling seasons. The sheathing membrane colour (emissivity) has an insignificant effect if it is behind the opaque cladding but may produce a major difference if used in combination with transparent cladding. The exhaust ventilative design is indicated to have an improved cooling potential by generating bulk air movement. interestingly, the airflow for the EV wall is shown to produce a peak for the day as well as night-time. Daytime flow is promoted by solar radiation and night-time flow is generated by indoor and outdoor temperature differences. The experimental result indicated that, in transparent cladding, the effect of cavity width on the EV wall thermal performance is very little. An EV wall with transparent cladding attains a higher cavity temperature, but more air moves in the opaque EV wall. Similarly, walls with bigger wall openings allow more airflow. And finally, as cavity temperature is crucial in accurately estimating the cavity airflow rate, from the monitored data, a regression model to predict the cavity temperature, as well as airflow, are developed.
Experimental investigation of living architecture design tools to attenuate rooftop noise
The aim of this research is to investigate the viability of designing urban rooftop soundscapes. The prerequisite is to reduce the sound propagation from road traffic by introducing living architectural rooftops with various components of sound attenuating technologies. The final goal is to turn unused rooftop space into a livable urban green space, where soundscape is balanced, and sound energy is reduced to the limits recommended by the World Health Organization (WHO). The first part of this research is to identify the potential of living architectural technologies to attenuate noise from road traffic. More than 33 measurements are performed of living architecture design tools, such as green roofs, berms at edge, living wall barriers and overhangs, to investigate the behavior of sound attenuation in an anechoic chamber and in ODEON, a computer simulation software. The second part of this research is to use the findings on the proposed design tools for an architectural case study, a flat-roof five-storey building located on East Hastings Street. The use of a combination of green roof, berm, overhang, guard and living wall can reduced urban traffic noise from 70 dBA on the roof to 55 dBA, creating additional acoustically healthy habitable space in the urban environment.
Experimental investigation of residential building heating and ventilation systems performance
The building sector is one of the most dynamically evolving field with an expectation to provide comfortable, clean and healthy indoor environment with less energy consumption. This acceptable indoor condition is created with a combination of heating/cooling systems and ventilation strategies. There are various systems available, which can deliver heating/cooling as well as ventilation to a dwelling space. These systems involve different heat transfer mechanisms and ventilation strategies: as a result, their performance would be different. Accordingly, the performance of these systems would affect indoor conditions. The process of providing an acceptable indoor environment with minimized energy use can be challenging. In addition to that, there is also a keen interest to reduce the current trend of the building energy consumption as low as possible without affecting the required, comfortable indoor environment. Therefore, the requirement of comprehensive field research that studies and compares most of currently available space heating systems, as well as ventilation strategies, is highly vital to provide information about their actual and relative performance in a real scenario. This research project conducts a field experiment that studies, heating systems, ventilation strategies, and ventilation flow rates. The first part is done by running two different heating systems at a time out of four heating systems (electrical baseboard heater, portable radiator heater, heat pump, and Radiant floor heating systems) in identical full-scale test building with similar ventilation strategy and similar ventilation flow rate. Whereas, the second group of experiments compare two ventilation strategies (mixed ventilation and underfloor ventilation) inside two test buildings with similar heating systems and ventilation flow rate. The third group of comparison compares three ventilation flow rates (15 cfm, 7.5 cfm, and 5 cfm) in the test buildings with similar heating systems and ventilation strategies. Various indicators and indoor environmental elements are used to conduct the comparisons. In the first case where heating systems are compared, the thermal energy provide by the systems are used for comparison. In addition, the thermal comfort, local thermal discomfort, temperature distribution and RH distribution are used to assess and compare the indoor environment produced by the systems. Whereas, the ventilation strategies are compared using indoor environmental element (temperature, relative humidity, CO2, and air velocity) distributions. Finally, the comparison of ventilation flow rates is performed using contaminant removal effectiveness, indoor air quality number, and indoor environmental element distributions. The findings from the experiments indicate that all of the heating systems provide similar daily thermal energy between 10 kWh and 14 kWh based on the outdoor weather condition. In addition, all of the heating systems produce a thermally comfortable indoor environment for standing person. Whereas, the ventilation strategies comparison shows that mixed ventilation strategy performance is slightly better than an underfloor Ventilation strategy by creating marginally uniform CO2 and RH distribution. Moreover, the results of the ventilation flow rates comparison show that the temperature and air velocity distribution find similar while using all the three ventilation flow rates. But the higher ventilation flow rate removes relatively more RH and CO2 in comparison to the lower one. Accordingly, the higher ventilation flow rates depict higher contaminant removal rate and high indoor air quality number relative to lower ventilation flow rate., Ventilation Effectiveness, Ventilation Flow Rate, Indoor Air Quality Number, Thermal Energy, Portable Radiator Heater
Field experiment on the effect of interior living walls on indoor environmental quality
Indoor environmental quality (IEQ) has multiple aspects such as: indoor air quality (IAQ), acoustics, thermal conditions, lighting, and ventilation. This research focuses on indoor air quality and acoustics and studies the effect of interior living walls on indoor air quality and acoustical characteristics of rooms through field monitoring and experiment. Previous laboratory studies have been carried out at the British Columbia Institute of Technology (BCIT) and the University of British Columbia (UBC) on the effect of living walls on acoustics and indoor air quality. This study, examines the acoustical effect of living walls (background noise level, reverberation time, and speech articulation) as well as the effect of living walls on indoor air quality (Carbon Dioxide, Volatile Organic Compound, and endotoxin) through field measurements in the BC Hydro Theater at the Centre for Interactive Research in Sustainability (CIRS) at UBC. Existing predictive models are verified using field data, and are used to predict the effect of interior living walls on indoor air quality and acoustics in an adjoining lab., Interior living walls
Field investigation of moisture buffering potential of gypsum board in a residential setting under varying operating conditions in a marine climate
Indoor relative humidity is of critical importance to maintain at acceptable and stable levels for building occupants’ health and comfort, energy efficiency, and building envelope durability. The main factors that determine the indoor relative humidity levels in a building are ventilation rate and scheme, moisture sources and sinks, and moisture buffering effect of materials. As buildings enclosures are retrofitted for improvements in water shedding and energy performance, they are becoming more airtight. Such a retrofit measure without addressing increased ventilation needs will lead to significant building envelope and indoor air quality problems. In this thesis, this point is highlighted in a reference residential building, occupied by low-income, high occupancy residents. This research aims to determine the effect of moisture buffering of unfinished gypsum board as a passive means to regulate indoor humidity in a field experiment setting. Two identical test buildings exposed to real climatic loads are used to evaluate the moisture buffering effect of gypsum board for different simulated occupant densities and ventilation strategies. The effect of passive and active indoor moisture management measures are compared between 8 test cases. Implications on indoor air quality and ventilation heat loss are also discussed. The results show that moisture buffering is an effective means of passively regulating indoor relative humidity levels in Vancouver’s marine climate, when coupled with adequate ventilation as recommended by ASHRAE, even under high moisture loading. When working in tandem with adequate ventilation, moisture buffering helps to regulate changes in relative humidity levels by reducing humidity peaks. This in effect decreases dew point temperatures, and the likelihood of condensation and microbial growth. 4 ventilation schemes are provided as active measures to manage indoor moisture coupled with moisture buffering in the field experiment. The results show competing benefits when it comes to managing indoor air quality, indoor humidity, and minimizing ventilation heat loss. Time-controlled ventilation is effective at maintaining relative humidity at acceptable levels for thermal comfort. Time-controlled ventilation also provides considerable savings in ventilation heat losses of 20% in comparison to constant ventilation. However, CO2 levels are exceeded beyond what is acceptable for good indoor air quality for 50% of the monitoring period. Conversely, demand-controlled ventilation schemes produce favourable indoor air quality based on CO2 levels, while compromising indoor humidity levels.
A field study on quality of three First Nation homes on the Squamish Urban Reserve of West Vancouver
Three new homes in the First Nations Squamish urban reserve were instrumented, tested, and monitored for a period of one year. Performance data was obtained from these homes and analyzed to help assess their quality and improve their performance. From the field study, the houses performed reasonably well. However, there is large room for improvements. Considering construction durability, the built-in moisture in the houses dried well. However, as expected, the moisture in the attics was high and improvements are recommended. The monitoring also confirmed that north facing walls take more time to dry and remain wet in some areas, despite the fact that the monitored year was one of the driest years in record, as reported by Environment Canada. Dangerously high moisture levels were also recorded in a few wall locations, believed to be caused by construction deficiencies at window sills and wall penetrations. In general, wall orientation and obstructions to solar radiation play a major role in the moisture balance of walls. This study confirmed that north-facing walls have higher moisture content, which also takes longer to dry out. South-facing and east-facing walls have lower moisture content (i.e. due to higher solar radiation and higher wall temperature to promote evaporation). The effect of external obstructions (i.e. large trees) to solar radiation was seen in the high moisture content of the west walls that was close to that of north walls. However, as reported in this study, poor construction detailing overpowers orientation on impacting wall moisture, and is the major source of concern for rain penetration. Unfortunately, wood-frame construction is unforgiving to construction deficiencies, and maximum care must be exercised to protect all details and wall penetrations from rain. Considering the indoor environment, in general the conditions were within acceptable limits; however, indoor conditions are greatly affected by occupants’ behaviours (e.g. opening windows in cold days). Particular problems arising from tobacco smoking and wood carving could not be measured. From the field study and computer simulations, it is recommended to make the houses more airtight to improve durability, energy efficiency, and possibly indoor air quality. It is also recommended to decouple the ventilation system from the house heating system to improve its ventilation reliability., Monitoring First Nation homes, Indoor air quality and energy efficiency, CO2 contaminant dispersion models, Ventilation

Pages