BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

The Additional sex combs gene of Drosophila encodes a chromatin protein that binds to shared and unique Polycomb group sites on polytene chromosomes
The Additional sex combs (Asx) gene of Drosophila is a member of the Polycomb group of genes, which are required for maintenance of stable repression of homeotic and other loci. Asx is unusual among the Polycomb group because: (1) one Asx allele exhibits both anterior and posterior transformations; (2) Asx mutations enhance anterior transformations of trx mutations; (3) Asx mutations exhibit segmentation phenotypes in addition to homeotic phenotypes; (4) Asx is an Enhancer of position-effect variegation and (5) Asx displays tissue-specific derepression of target genes. Asx was cloned by transposon tagging and encodes a protein of 1668 amino acids containing an unusual cysteine cluster at the carboxy terminus. The protein is ubiquitously expressed during development. We show that Asx is required in the central nervous system to regulate Ultrabithorax. ASX binds to multiple sites on polytene chromosomes, 70% of which overlap those of Polycomb, polyhomeotic and Polycomblike, and 30% of which are unique. The differences in target site recognition may account for some of the differences in Asx phenotypes relative to other members of the Polycomb group., Peer-reviewed article, Published.
Gene expression noise in embryonic spatial patterning
Proceedings of 2011 21st International Conference on Noise and Fluctuations in Toronto, ON, Canada on 12-16 June 2011. Fruit flies serve as a model for understanding the genetic regulation involved in specifying the complex body plans of higher animals. The head-to-tail (anterior-posterior) axis of the fly (Drosophila) is established in the first hours of development. Maternally supplied factors form concentration gradients which direct embryonic (zygotic) genes where to be activated to express proteins. These protein patterns specify the positions and cell types of the body's tissues. Recent research has shown, comparing between embryos, that the zygotic gene products are much more precisely positioned than the maternal gradients, indicating an embryonic error reduction mechanism. Within embryos, there is the additional aspect that DNA and mRNA operate at very low copy number, and the associated high relative noise has the potential to strongly affect protein expression patterns. In recent work, we have focused on the noise aspects of positional specification within individual embryos. We simulate activation of hunchback (hb), a primary target of the maternal Bicoid (Bcd) protein gradient, which forms an expression pattern dividing the embryo into anterior and posterior halves. We use a master equation approach to simulate the stochastic dynamics of hb regulation, using the known details of the hb promoter, the region of DNA responsible for transcribing hb mRNA. This includes the binding/unbinding of Bcd molecules at the promoter, hb transcription, subsequent translation to Hb protein, binding/unbinding of Hb at the promoter (self-regulation), and diffusion of the Bcd and Hb proteins. Model parameters were set by deterministically matching large scale pattern features for a series of experimental expression patterns: wild-type (WT) embryos; hb mutants lacking self-regulation; and constructs in which portions of the hb promoter were used to express a reporter gene (lacZ). The model was then solved stochastically to predict the noise output in these different experiments. In subsequent noise measurements we experimentally corroborated a number of the predictions. These include that mRNA is noisier than protein, and that Hb self-regulation reduces noise. Results indicate that WT (self-regulatory) Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, and is uncorrelated with Bcd fluctuations. This contradicts prior work, which had assumed a complete dependence of Hb fluctuations on Bcd fluctuations. In the constructs and mutant, which lack self-regulation, we find that increasing the number and strength of Bcd binding sites (there are 6 in the core hb promoter) provides a rudimentary level of noise reduction. The model is robust to the various Bcd binding site numbers seen across different fly species. New directions in the project include incorporating a known inhibitor of hb, Krüppel, into the model to study its effect on the noise dynamics. Our study has identified particular ways in which hb output noise is controlled. Since these involve common modes of gene regulation (e.g. multiple regulatory sites, self-regulation), these results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development., Conference paper, Published.
Sharp borders from fuzzy gradients
Critical boundaries in the early Drosophila embryo are set by morphogenetic gradients. A new quantitative study shows that the placement of one such boundary is more accurate than the gradient thought to set it. Genetic analysis of the accuracy of the process implicates a gene not previously thought to be involved., Peer-reviewed article, Published.
Transcriptional bursting in drosophila development
Anterior-posterior (AP) body segmentation of the fruit fly (Drosophila) is first seen in the 7-stripe spatial expression patterns of the pair-rule genes, which regulate downstream genes determining specific segment identities. Regulation of pair-rule expression has been extensively studied for the even-skipped (eve) gene. Recent live imaging, of a reporter for the 2nd eve stripe, has demonstrated the stochastic nature of this process, with ‘bursts’ in the number of RNA transcripts being made over time. We developed a stochastic model of the spatial and temporal expression of eve stripe 2 (binding by transcriptional activators (Bicoid and Hunchback proteins) and repressors (Giant and Krüppel proteins), transcriptional initiation and termination; with all rate parameters constrained by features of the experimental data) in order to analyze the noisy experimental time series and test hypotheses for how eve transcription is regulated. These include whether eve transcription is simply OFF or ON, with a single ON rate, or whether it proceeds by a more complex mechanism, with multiple ON rates. We find that both mechanisms can produce long (multi-minute) RNA bursts, but that the short-time (minute-to-minute) statistics of the data is indicative of eve being transcribed with at least two distinct ON rates, consistent with data on the joint activation of eve by Bicoid and Hunchback. We also predict distinct statistical signatures for cases in which eve is repressed (e.g. along the edges of the stripe) vs. cases in which activation is reduced (e.g. by mutagenesis of transcription factor binding sites). Fundamental developmental processes such as gene transcription are intrinsically noisy; our approach presents a new way to quantify and analyze time series data during developmental patterning in order to understand regulatory mechanisms and how they propagate noise and impact embryonic robustness., Peer-reviewed article, Published. Received: November 21, 2016; Accepted: April 8, 2017; Published: April 24, 2017.