Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Assessment of an urban floodplain reconnection project: A case study from the Mamquam River basin, BC.
Dikes and culverts have limited access to off-channel rearing habitats important to juvenile coho salmon (Oncorhyncus kisutch). This study assessed the success of a floodplain reconnection project in Squamish, BC, at providing rearing habitats. Recommendations on restoration priorities within the area were also provided. A single-season, multi-scale occupancy model was used to estimate the probability of occurrence and detection of juvenile coho during the summer. Regression models were used to assess water and habitat quality and identify relationships with juvenile coho metrics. Culverts were also scored for fish passage. The results of this study indicate that the reconnection project was overall successful. Coho non-detections occurred in areas with poor dissolved oxygen and culvert passage issues. Restoration actions should focus on improving water quality in these areas, and protection of areas of high CPUE. Positive relationships between stream productivity and coho metrics indicates the importance of future studies on macroinvertebrate supply., coho salmon, escape cover, rearing habitat, floodplain reconnection, urban channels, Mamquam River
Determining the Accuracy of the Beaver Restoration Assessment Tool for Identifying North American Beaver (Castor canadensis) Habitat in the Central Interior Cariboo Region of British Columbia
Perennial watercourses in British Columbia are becoming intermittent from climate change. North American beaver (Castor canadensis) dams retain perennial flow while providing other ecosystem services. The Beaver Restoration Assessment Tool (BRAT) estimates a stream’s dam capacity by evaluating the vegetative, physical, and hydrological habitat. This research project surveyed 15 streams in the Cariboo region to assess the accuracy of the BRAT’s outputs. Climate data were used to model changes in flow. Overall, the BRAT outputs generally correlated with field measurements. However, the non-vegetation outputs contributed minimally to dam capacity, and higher dam capacity did not always indicate higher habitat quality. Climate projections also indicate most streams will lose nival flow by 2041-2071. Therefore, using the BRAT with other models can determine both dam capacity and overall habitat quality to increase successful beaver restoration chances. When vegetation and physical stream conditions are met, higher watershed/channel size may indicate higher-quality habitat.
Drivers of humpback whale movement in Boundary Pass, British Columbia
The Salish Sea is critical habitat for several whale species including the humpback whale (Megaptera novaeangliae). Boundary Pass is part of the Salish Sea and connects the Pacific Ocean to several commercial shipping ports in the Pacific Northwest Region of North America. Since 1997, the number of Humpback whales continues to increase in this area, meanwhile the number of vessels is also increasing such that Boundary Pass is among the busiest shipping routes in the region. This high vessel traffic in the area leads to acoustic disturbances that degrades whale foraging opportunities for humpback whales. Commercial vessels transporting goods through whale habitat causes an increased risk of vessel collisions with humpback whales. Humpback-whale movements in Boundary Pass was recorded through systematic scan surveys conduction from a vantage point between June and August. Whale occupancy was compared to oceanographic variables and vessel presence. We found humpback whales were most likely to be present during ebb tides of speeds of -2 m/s under the influence of low tides and also whales were active in areas overlap with shipping lane in the area. Based on our founding in the area about humpback whale connection with biophysical properties of region I hypothesized that whale distribution in area and it relation to low tide and ebb current is most probably under the influence of food abundance in those periods of time. This study concludes with policy recommendations for improving humpback whale foraging grounds by reducing acoustic harassment and risk of ship strikes in the Boundary Pass., Humpback whale, movements, oceanographic variables, Boundary pass, Salish sea, Vessel strike, tide, currents, SST, salinity
An ecological restoration plan for a weedy field at the University of British Columbia Okanagan
Grassland ecosystems are rare, in decline, and support a multitude of at-risk species in British Columbia. At the University of British Columbia Okanagan in Kelowna BC, a 3.3 ha site at the entrance of the campus is outlined as Okanagan grassland in campus design plans but currently lacks native bunchgrass communities. The goal of this restoration plan is to return grassland plant communities to the site despite the pervasiveness of noxious weeds. I characterised site conditions through soil and vegetation surveys. Restoration recommendations include managing noxious weeds through mowing, hand-pulling and some herbicide application. The site will be replanted with bunchgrass vegetation, two pockets of ponderosa forest, and two types of shrub communities. A walking path, signage, and two xeriscape gardens will also be included to control human use of the landscape. Long-term monitoring will be incorporated into classroom curricula to tie monitoring to learning opportunities., Grassland, exotic plants, Noxious weeds, urban restoration, restoration plan
The effect of nitrogen fertilization on the physiology and morphology of Sphagnum capillifolium in an ombrotrophic bog
Degraded peatlands release 100-200 g-CO2 eqv. m-2 yr-1 in net emissions and account for more than 10% of global CO2 emissions. The success of bog restoration is dependent on creating suitable moisture conditions for the donor material to establish, propagate, and develop a new layer of Sphagnum that has hydrophysical and water retention properties similar to natural peatlands. Techniques to improve moisture retention during the transplant process and increase water holding capability of the restored Sphagnum layer have been identified as an area of bog restoration that requires more research. Samples were collected from plots fertilized with six different nitrogen treatments at Mer Bleue Bog in Ottawa, Canada. Net CO2 assimilation, fresh weight, dry weight, water content, and dissolved nutrient measurements were made to determine the potential effectiveness of incorporating nitrogen fertilization into the North American approach to peatland restoration. High levels of nitrogen fertilization exerted deleterious effects on individual morphology, growth density, water holding and retention capacity, CO2 assimilation, and nutrient dynamics and decomposition. Fertilization with 1.6 g m-2 yr-1 of ammonium has the potential to ameliorate water retention capacity through more robust individual morphology and denser growth patterns and increases carbon assimilation and photosynthetic capacity. The results indicate integrating low levels of ammonium fertilization into bog restoration techniques can potentially increase restoration success., water content, carbon dioxide assimilation, growth density, peatland restoration, ammonium, nitrate
The effect of time-since-burning and hand-pulling on the growth and stem density of Centaurea stoebe and Linaria dalmatica
Prescribed burning and hand-pulling are used to manage invasive plants but treatments can deferentially affect species. My objective is to determine the effect of time-since-burning and hand-pulling on stem density and growth of Centaurea stoebe (spotted knapweed) and Linaria dalmatica (Dalmatian toadflax). Prescribed burns occurred in March 2015 and 2016, while hand-pulling occurred in April and May of 2017. I conducted vegetation surveys in May, June, and July 2017. Growth rates differed among treatments and by species. Centaurea stoebe was not detected in the prescribed burn treatments. Hand-pulling increased stem density of C. stoebe, but individuals were smaller and 60% remained as basal rosettes compared to control. Linaria dalmatica were significantly taller in the burn treatments, and the stem density of L. dalmatica was greater in the prescribed burn and hand-pull treatments compared to control. The tallest L. dalmatica occurred in the 2-year post-burn site, indicating a time-since-burning interaction., invasive plants, prescribed burning, hand-pulling, Cetaurea stoebe, Linaria dalmatica
Identifying temporal trends and mechanisms for successful reforestation on former agricultural land
This study investigates the outcomes of restoration efforts completed on retired agricultural land in Southwest Ontario. Sites acquired by the Nature Conservancy of Canada were planted to kickstart succession to native deciduous forests, but the results of the plantings are mixed. Analysis of soil conditions indicated that low levels of soil organic carbon were correlated to low water content and high density unfavourable for plant growth. Analysis of remotely sensed imagery was done to assess and compare vegetation cover to reference conditions at Walpole Island First Nation. Analysis revealed that successful restoration was dependent on multiple soil characteristics, but conditions correlated to higher total organic carbon favoured greater vegetation cover. Remote sensing data revealed that succession towards tree canopy development was accelerated compared to passive restoration, and a shaded understory was established approximately 8-12 years following restoration. Future work can expand on succession and the effects of other restoration treatments., Soil, Reforestation, NDVI, Agriculture, Restoration, Secondary succession
A meta-analysis of North Shore streams: maximizing the effect of installed rain gardens through strategic placement
A meta-analysis using pre-existing data was done for streams in the North Shore of Vancouver, British Columbia. Parameters considered were chemical concentrations from stormwater input including: heavy metals concentrations (Copper (Cu), Zinc (Zn), Cadmium (Cd), Lead (Pb)) and nutrient concentrations (Nitrate (N03-) and Orthophosphate (P04 3-))_ Chronic toxicity guideline exceedance based on the British Columbia Approved Water Quality Guidelines was found in all 94% of stream systems for Cu and 44% of stream systems for Zn. Heavy metal concentrations were found to be positively correlated with percent impervious surface cover in the watershed, with the strength of the correlation being metal-dependent. Three sites within the study had the highest levels of both Cu and Zn. These watersheds (Upper Keith Creek, Maplewood Creek, and Mackay Creek) were prioritized for rain garden installation. Rain garden building specifications to remediate for Zn and Cu were recommended and included addition of mulch layer, minimum depth of topsoil (30 cm), and vegetating with plants with high potential for biofiltration and/or phytoremediation., Impervious surface cover, Stormwater, Rain garden, Green infrastructure, Heavy metal analysis
A mitigation plan for salmonid spawning habitat in the Lower Seymour River, North Vancouver
Salmonids are a very important species to British Columbia and the Pacific Northwest. They are an icon of British Columbia’s heritage and they hold many ecological, economical, recreational, and cultural values. Unfortunately, Pacific salmonid populations have been declining over the last century due many reasons including degradation of freshwater habitat used for spawning and rearing. This degradation is largely due to expanding urbanization and the installation of dams for flood control, hydropower and water supply. The Seymour River is a mountainous river located in North Vancouver. Over the past century, this river has been subjected to many anthropogenic activities that have cumulatively altered the natural flow and sediment regime. The Seymour Falls Dam, located in the middle of the watershed, intercepts gravel transport from the upper watershed into the lower reaches. This combined with the intense channelization within the lower 4 km of the river, which has created conditions incapable of gravel deposition and retention, has led the lower reaches to become gravel deficient. This gravel deficiency has caused the degradation of traditional spawning grounds of chum (Oncorhynchus keta), and pink salmon (Oncorhynchus gorbuscha). This study aims to: 1) determine if there is a gravel deficiency for chum and pink salmon spawning in the lower 1.5 km reaches and, 2) provide recommended mitigative treatments of gravel addition to increase suitable spawning area, and therefore increase salmon productivity of the Seymour River. A site assessment was conducted on the lower 1.5 km of the Seymour River and included sampling of the five key parameters that define spawning habitat (i.e., water depth, velocity, dissolved oxygen, water temperature and substrate). A particular focus was given on analysing the substrate as it was expected to be deficient for spawning due to the predetermined conditions in the watershed such as the dam and the channelization. Results of the site assessment confirmed that substrate is the limiting factor for chum and pink salmon spawning in this area as the bed surface is composed of large cobbles and boulders too large for these specific species to move to dig a redd. Therefore, a xi mitigation plan of gravel addition is proposed to increase spawning habitat and conserve these salmon runs. Two gravel placement sites were selected between Mt. Seymour Parkway and Dollarton Bridge. A gravel mobility analysis determined that suitable-sized gravel will not be deposited or retained naturally on the channel bed due to the slope and water depth at high flood events. Therefore, gravel catchment structures are proposed to dissipate energy, thereby promoting deposition and reducing scouring. Each site contains a different design tailored to the specific characteristics of that reach. To retain gravel, spurs composed of the surface cobbles and boulders are proposed along with imbedded gravel pads composing of suitably sized gravel brought in from a local source. In total these two sites could provide about 1,925 m2 of additional spawning habitat which could support 209-836 pairs of chum or 3,208 pairs of pink salmon. Through long-term monitoring, this project in the Seymour River could provide strategies of gravel placement in large, urbanized, gravel-deficient rivers, in which current research is limited. Many rivers in North Vancouver (i.e., Capilano River, Lynn Creek, McKay Creek and Mosquito Creek) may be experiencing a gravel deficit similar to the Seymour River, and the strategies outlined in this project could be adapted to the specific conditions of those rivers. The cumulative effect of adding spawning gravel in each river within the Burrard Inlet, as well as elsewhere in the Pacific Northwest, could reduce stress in their freshwater phase and aid in rebuilding salmon populations from their precipitous decline in which they are on currently on track for. The strategies provided will also become important as more rivers become sediment deprived due to the construction of hydropower dams in response to a change from fossil fuels to renewable energies as climate change continues. The need for more innovative habitat mitigation strategies will be necessary to keep salmon from becoming a relic of the past.
Phytoremediation of contaminated soils
Phytoremediation poses an ecologically friendly and cost-effective alternative to other remediation methods such as chemical or thermal treatment. However, in contaminated sites such as retired oil wells and brine spills, it is common to have a co-contamination of salt and polyaromatic hydrocarbons (PAHs). The co-contamination of salt and PAHs may decrease the rate and effectiveness of bioremediation. Here we investigated the effect soil salinity has on the rate of phytoremediation, plant survivability and biomass. A 90-day greenhouse study was performed, growing alfalfa (Medicago sativa L.) in soils treated with varying salt (NaCl) concentrations in the presence of pyrene and benzo[a]pyrene. No significant differences were observed in the presence or absence of PAHs. Salt treatments has significant affects on plant biomass, nodulation, and successful germination., Bioremediation, Polyaromatic hydrocarbons, Alfalfa, Salt, Phytoremediation
A prey-based approach to restoration
Forestry in British Columbia’s old-growth forests has reduced critical foraging and breeding habitat for the coastal northern goshawk (Accipiter gentilis laingi) and restricted population growth. Now at-risk, efforts to recover this subspecies have focused on establishing suitable habitat and a well-distributed population within the province. However, regional diets and associated dynamics are also critical to goshawk recovery and remain poorly understood. Including a synchronous predator-prey recovery approach to current plans can bridge these knowledge gaps. A new model and methods were developed to translate prey biological requirements into structural surrogate features that could be parameterized and ranked within GIS software. Applying these ranks to known goshawk territories in the South Coast allowed for the visualization and quantification of areas with subpar predicted prey abundances. This provided insight on links between prey and forest structure and can be used to direct future restoration and research decisions for coastal goshawk prey-based recovery.
Restoration of the upper Salmon River watershed: projected effects of diversion removal on salmonid abundance
The Salmon River, located within the Laich-kwil-tach First Nations’ traditional territory on Vancouver Island, supports a diverse community of anadromous and resident salmonids despite having cumulative effects from historical resource development (Burt 2010a). Currently, BC Hydro’s diversion dam and transfer canal on the Salmon River provides water for hydroelectric power production in Campbell River, but restricts the upstream and downstream movement of native salmonids (Anderson 2009, BC Hydro 2012). This report addresses removing the Salmon River diversion and providing coho salmon (Oncorhynchus kisutch) and steelhead trout (O. mykiss) unrestricted access into the upper Salmon River watershed. This restoration project will mitigate projected effects of climate change on freshwater life stages of the Salmon River salmonids by addressing increasing stream temperatures and seasonal low flows. Completing this restoration project is the first step in recovering the salmonid productivity of the upper Salmon River., salmonid productivity, Salmon River, coho salmon, steelhead trout, ecological restoration, dam removal

Pages