Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Identifying temporal trends and mechanisms for successful reforestation on former agricultural land
This study investigates the outcomes of restoration efforts completed on retired agricultural land in Southwest Ontario. Sites acquired by the Nature Conservancy of Canada were planted to kickstart succession to native deciduous forests, but the results of the plantings are mixed. Analysis of soil conditions indicated that low levels of soil organic carbon were correlated to low water content and high density unfavourable for plant growth. Analysis of remotely sensed imagery was done to assess and compare vegetation cover to reference conditions at Walpole Island First Nation. Analysis revealed that successful restoration was dependent on multiple soil characteristics, but conditions correlated to higher total organic carbon favoured greater vegetation cover. Remote sensing data revealed that succession towards tree canopy development was accelerated compared to passive restoration, and a shaded understory was established approximately 8-12 years following restoration. Future work can expand on succession and the effects of other restoration treatments., Soil, Reforestation, NDVI, Agriculture, Restoration, Secondary succession
The impacts of exotic Typha on benthic invertebrate communities in the South Arm of the Fraser River Estuary
In recent decades, the exotic cattail Typha angustifolia and its hybrid Typha x glauca have invaded the Fraser River estuary. The impacts from this invasion on benthic macroinvertebrate communities, however, are yet to be studied. Macroinvertebrates play important roles in food chains, trophic dynamics, and nutrient cycling and are potentially at risk from this invasion. In this study, I compared the benthic invertebrate communities between exotic cattail stands and native vegetation stands at 25 paired sites. Sediment cores were analyzed for invertebrate abundance, biomass, and Shannon Wiener diversity index, and it was found that biomass and abundance were lower in exotic cattail when compared to native vegetation, however, there was no difference in diversity. Given the proximity to side channels, tidal inundation time would be a logical explanation for the differences in the benthic communities; however, it was not found to be a significant predictor. Given the invasive nature of exotic cattail and the correlations that were found, cattail should be removed in restoration projects where possible., Fraser River, Typha x glauca, Estuary, Invasive species, Typha angustifolia
Investigation of the effects of soil and biochar in a rain garden on stormwater quality improvement
Stormwater runoff from parking lots often contains a variety of elements and compounds in different forms and concentration that may pose risks to biota in receiving aquatic systems. Heavy metals including lead (Pb), cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) are of particular concern in such runoff due to their prevalence, toxicity to aquatic organisms and persistence in environment. The ability of commercially available biochar to remove pollutants of concern through column treatments was assessed in this research. Different treatments of biochar were considered and their ability to remove pollutants was compared to soil. The biochar (Emergent and Cantimber) used in this study showed a significant higher molecular weight PAHs removal ability compared to soil and followed the order of Cantimber > Emergent > soil. The effects of heavy metals and PAHs on aquatic organisms and plants degradation can be mitigated by amending the soil media with biochar in the bioretention cells such as raingarden. This could be applied in real world where stormwater runoff can be treated before entering into river or stream therefore cutting the need of future restoration., Emergent Biochar, Cantimber Biochar, Parking lot stormwater, Low impact development, Heavy metals, PAHs, Constructed wetlands
Mapping floodplain fish habitat in the heart of the Fraser River and restoration options for impacted attributes on selected large mid-channel islands
The purpose of this project is to develop an ecological restoration plan for degraded habitats on mid-channel islands in the lower Fraser River. The study focuses on Herrling, Carey, and Strawberry islands, large mid-channel islands located in the gravel reach between Mission and Hope, British Columbia. These islands are known to be critical off-channel rearing habitat for many fish species including the threatened White Sturgeon (Acipenser transmontanus) and interior and lower Fraser watershed Chinook Salmon (Oncorhynchus tshawytscha) populations. These islands are also home to many riparian plant and animal species. The flood-pulse concept (FPC) states that seasonal fluctuations in water levels for streams such as the Fraser River contribute substantially to the ecological function of the floodplain ecosystem where this phenomenon occurs. This often results in improved growth and survival rates for fish species that rely on a laterally-moving littoral zone of inundation. This phenomenon is thought by many to be the key to a properly functioning ecosystem in the lower Fraser River. Using a Digital Elevation Model (DEM) for the Fraser River between Hope and Mission, British Columbia, freshet flows (high water elevations) are presented to define the spatial extent of over-bank watering of Strawberry, Carey and Herrling islands. This over-bank watering provides lateral connectivity to floodplain islands. Based on extensive sampling in other studies, this lateral movement results in the creation of high-quality juvenile fish rearing habitat. A restoration plan is presented for those areas of Strawberry, Carey and Herrling islands degraded by recent land clearing for agriculture where they overlap sections defined as fish habitat from the spatial analysis., gravel reach, mid-channel islands, floodplain fish habitat, flood pulse concept, juvenile Chinook Salmon, lower Fraser River, White Sturgeon
A meta-analysis of North Shore streams: maximizing the effect of installed rain gardens through strategic placement
A meta-analysis using pre-existing data was done for streams in the North Shore of Vancouver, British Columbia. Parameters considered were chemical concentrations from stormwater input including: heavy metals concentrations (Copper (Cu), Zinc (Zn), Cadmium (Cd), Lead (Pb)) and nutrient concentrations (Nitrate (N03-) and Orthophosphate (P04 3-))_ Chronic toxicity guideline exceedance based on the British Columbia Approved Water Quality Guidelines was found in all 94% of stream systems for Cu and 44% of stream systems for Zn. Heavy metal concentrations were found to be positively correlated with percent impervious surface cover in the watershed, with the strength of the correlation being metal-dependent. Three sites within the study had the highest levels of both Cu and Zn. These watersheds (Upper Keith Creek, Maplewood Creek, and Mackay Creek) were prioritized for rain garden installation. Rain garden building specifications to remediate for Zn and Cu were recommended and included addition of mulch layer, minimum depth of topsoil (30 cm), and vegetating with plants with high potential for biofiltration and/or phytoremediation., Impervious surface cover, Stormwater, Rain garden, Green infrastructure, Heavy metal analysis
Nanaimo River estuary restoration: an assessment of berm removal on benthic macroinvertebrates in tidal channels
Macroinvertebrates in two berm-impacted tidal channels (Site A and Site B) were compared to a natural channel (Site C) to determine short-term response to berm removal restoration using a BACI study design. Multivariate analysis indicates that the benthic community composition shifted from before berm removal to after berm removal conditions but not in a predictable organized way. Total abundance was highest at Site A in both conditions (before and after berm-removal). Invertebrate diversity was similar and low among sites. Biomass was highest at Site C. Organic matter percentage was highest at Site C in both conditions and it appeared to increase in Site A and Site B after berm removal. Silt & Clay (>0.0063mm) were statistically different in Site C compared to Site A and Site B although very fine sand was the highest in percentage among sites and in both conditions. Berms affect channel and benthic invertebrate dynamics; time and more research are needed to fully restore the Nanaimo estuary., © Okezioghene Akporuno, 2020. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Estuary restoration, Tidal channel, Benthic macroinvertebrate, Sediment, Detritus, Berm
Novel ecosystems: necessity, revolution, or laziness?
The earth’s environment, climate, and natural systems are constantly changing, having little resemblance of ecosystems past. These new systems functioning in balance are termed “novel ecosystems” and have arisen as the new normal posing an important question in the restoration field as to how these systems should be approached. To address the state of novel ecosystems in the academic literature, I devised a matrix to assess variables of description regarding novel ecosystems and how they are expressed in the literature. Results showed a predominance of self-assembled systems with a disposition towards invasive species as a primary threat. Chemical, physical, and landscape data was severely lacking and most metrics for success were ecological. Data from the literature show a lack of research on designed novel ecosystems but shows promise for success given several examples. More research on novel ecosystems in restoration must be undertaken to fill gaps in aggregate data., © Michael Paleologou, 2020. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Ecological Restoration, Novel Ecosystems, Literature Review
A prey-based approach to restoration
Forestry in British Columbia’s old-growth forests has reduced critical foraging and breeding habitat for the coastal northern goshawk (Accipiter gentilis laingi) and restricted population growth. Now at-risk, efforts to recover this subspecies have focused on establishing suitable habitat and a well-distributed population within the province. However, regional diets and associated dynamics are also critical to goshawk recovery and remain poorly understood. Including a synchronous predator-prey recovery approach to current plans can bridge these knowledge gaps. A new model and methods were developed to translate prey biological requirements into structural surrogate features that could be parameterized and ranked within GIS software. Applying these ranks to known goshawk territories in the South Coast allowed for the visualization and quantification of areas with subpar predicted prey abundances. This provided insight on links between prey and forest structure and can be used to direct future restoration and research decisions for coastal goshawk prey-based recovery.
Restoration options for Nicomekl River anadromous salmonids – Elgin Road Bridge Sea Dam
The Nicomekl River flows through historic Katzie First Nation territory in Surrey, British Columbia. The river provides salmon the linkage between their upland spawning and rearing grounds and the Pacific Ocean where they mature. Anthropogenic development has reduced habitat connectivity along the river, denuded the banks of vegetation, removed instream complexity, constrained the channel, regulated flow, and altered the water chemistry. A tidally controlled 7-gate sea dam is the source of the critical connectivity bottleneck on the river. It impairs free longitudinal migrations of adult and juvenile salmonids and increases adult and juvenile predation. Through literature review and site assessment, this study suggests a suite of restoration treatments to restore connectivity and site-based habitat attributes to the Nicomekl River. The study then considers management options in light of climate change, sea level rise, and how to generate public involvement to support the proposed treatments. The study concludes that urban stream restoration faces challenges as it must find a balance between the environmental and social needs of the Nicomekl River beyond simply repairing ecosystem damage and degradation., riparian restoration, salmonids, migration bottlenecks: connectivity
Restoration planning for urban salmonid habitat
Restoration of salmonid habitat has been completed in many urban areas; however, the success of these projects may be limited without consideration of water quality. Urban watersheds are affected by stormwater runoff which transfers toxic substances such as heavy metals, hydrocarbons, and fine particles from impervious surfaces into streams. Previous research has documented impacts of stormwater causing premature death in spawning coho (Oncorhynchus kisutch), and related extent of impervious surfaces to impacts on benthic invertebrates. This research aims to expand our knowledge on the effects of stormwater runoff on water quality and benthic invertebrate communities, and make recommendations for restoration of Mosquito Creek, in North Vancouver, British Columbia. Stream water quality was monitored, site habitats were assessed, and impervious surfaces were mapped. Benthic invertebrate samples were collected and analyzed for abundance, diversity, and pollution tolerance, comparing upstream and downstream of a stormwater inflow and two sites on a reference stream. Average water quality measurements showed minor impacts related to elevated temperatures. However, benthic invertebrate metrics revealed chronic water quality issues, reflecting cumulative impacts. Pollution tolerance index and abundance were reduced at the downstream Mosquito Creek site suggesting impacts from the stormwater inflow, while the Ephemoptera, Plecoptera, Trichoptera (EPT) to total ratio and overall stream health (Streamkeepers Site Assessment Rating) were significantly lower at Mosquito Creek overall suggesting watershed impacts from impervious surfaces and point-source pollution events. Restoration recommendations including a rain garden are discussed to improve water quality for salmonids., Restoration, Urban streams, Salmonids, Benthic invertebrates, Water quality, Stormwater
Restoring hydro-impacted wetlands for secretive marsh birds
Secretive marsh birds can be difficult to detect and are dependent on wetlands, leaving them vulnerable to wetland loss or alteration. This study examines the influence of management-altered hydrological regimes on five secretive marsh bird species in the West Kootenay and Columbia Wetlands in British Columbia, Canada. Focal species occupied wetlands with less frequently altered hydrological regimes more often and in greater numbers. Occupancy models suggested that woody vegetation, tall vegetation, and open water are important drivers of occupancy for these species. Wetlands most frequently experiencing heavily altered hydrological regimes had more open water and less tall vegetation, both of which were negatively associated with wetland occupancy. Water management operations may be promoting altered vegetation communities within these wetlands, in turn promoting lower occupancy of secretive marsh bird species. Restoration recommendations include: prioritizing lower elevation wetlands, limiting woody vegetation encroachment, and experimentally restoring the hydrological regime of affected wetlands., © Ashleigh M. Westphal 2019. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., secretive marsh bird, Kootenays, British Columbia, hydro, water management, wetlands
Splendor without spoil: restoring tidal channel habitat on Swishwash Island
Restoration of estuarine and tidal marsh habitats in Canada’s Fraser River estuary is imperative for the conservation and recovery of select depressed Pacific salmon populations and the many species that depend on them. In the 1930’s through to 1940’s, dredge spoils were deposited on East Swishwash Island, permanently altering the small delta island’s geomorphology and ecology. The purpose of this study was two-fold: 1.) Confirm and describe fish use of remnant tidal channel habitat on Swishwash Island, using juvenile Chinook salmon (Oncorhynchus tshawytscha) as a focal species and 2.) Quantify the historical tidal channel loss on East Swishwash Island and potential for restoration. Tidal channels and adjacent marshes were sampled for realized fish use, plant distributions, basic water parameters, and large woody debris (potential predator refugia). Remote data sets (historical and present-day) were used to quantify historic, current, and future tidal channel density scenarios. Swishwash tidal channels were utilized during the sampling period by Chinook salmon with comparable relative abundances and fork lengths. Tidal channel capacity and marsh habitat have been reduced by 50% on East Swishwash Island due to spoil deposition and marsh erosion. Based on reference conditions derived from undisturbed and historic marsh islands, restoring island elevations could facilitate the addition of 1 km of marsh edge while increasing tidal channel area on East Swishwash Island by nearly 200%. This would provide important habitat in a fragmented distributary of the Fraser River estuary to species of fish and wildlife, including 3 ecotypes of juvenile Chinook salmon., © Kyle Armstrong, 2019. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Estuaries, Chinook, Oncorhynchus tshawytscha, rearing, restoration, mitigation, tidal channels
Structural influence of old field on breeding summer songbirds, and overwintering raptor communities
Old field is a unnatural habitat that usually occurs as a result of agricultural land abandonment and is the product of early-stage natural succession on a previously managed field. In an agricultural setting with monoculture crops, old fields provide more vegetative complexity through ground cover diversity and shrubs and hedgerows. In Delta, British Columbia, several old-field sites are managed for wildlife and provide nesting habitat for songbirds over the summer, as well as foraging habitat for overwintering raptors during fall and winter months. I surveyed two old-field sites near Boundary Bay, and two field sites at the Vancouver Landfill to compare the influence of old-field vegetation on different bird communities and improve understanding on species using the landfill. I conducted fixed-radius point counts for songbirds, and standing counts for raptors. Comparing replicate field types (n=2) I found that overall diversity of songbirds was higher in old field, and also associated with structural features like shrubs and trees, while abundances of Savannah Sparrows (Passerculus sandwichensis) decreased with proximity to shrubs and trees. My results support the conclusion that installing structural vegetation features at the landfill would maximize breeding songbird diversity. I also found the landfill to support higher diversity of wintering raptor species, but old field supported consistently higher abundances. This suggests that the landfill is currently functioning as lower quality wintering habitat, and that different management techniques should be considered.
A Test of ARP Topic Categories
This is the abstract text for a test record. ThiThis is the abstract text for a test record. s is the abstract text for a test record. This is the abstract text for a test record. This is the abstract text for a test record. This is the abstract text for a test record. This is the abstract text for a test record. This is the abstract text for a test record. This is the abstract text for a test record., Water reclimation, soil
Testing primed white rot fungi for bioremediation of petroleum hydrocarbon contaminated soil & bioremediation options plan for Napo concession area in Ecuador.
Bioremediation has gained traction for its sustainable principles. Although, advancements in effectiveness are still needed to enable widespread application. This research has two major components. First, priming fungi could prove to be a useful tool to increase efficiency of white-rot fungi when used to bioremediate petroleum hydrocarbons contaminated soil. This study evaluated T. versicolor colonized in two substrates to test this theory. TPH was extracted from the soils using hexane shaking method, and measured on a CG-MS. The study results were not conclusive, and more research should be conducted to determine if priming white-rot fungi can increase the effectiveness of degradation of TPH in contaminated soils. Second, historical and unethical oil production in Ecuador has left an environmental and human health disaster. The goal of this study was to produce a high-level bioremediation plan that can be used and amended for site specific applications in Ecuador.
Throwing shade
Reed canarygrass (Phalaris arundinacea) is an invasive grass common in wetlands and riparian areas throughout the Pacific Northwest. It is highly adaptable and resistant to many control methods, but is vulnerable to shading. We sought to control reed canarygrass by establishing desirable native shrubs to overtop and shade it. Plots were rototilled, mulched, live-staked, and monitored for 2-6 growing seasons. We tested 1) effective planting densities by live-staking hardhack (Spiraea douglasii) at 50, 30, and 15 cm spacing, 2) relative species performance by planting hardhack, red-osier dogwood (Cornus sericea), and thimbleberry (Rubus parviflorus), all at 30 cm densities, and 3) alternative site preparation methods by using cardboard mulch or excavating the top 20 cm of topsoil. Higher planting density significantly reduced reed canarygrass cover and biomass. Both hardhack and red-osier dogwood successfully suppressed reed canarygrass, though thimbleberry did not. No significant differences between site preparation methods were observed., reed canarygrass, Phalaris arundinacea, invasive species management, live staking, planting density, Spiraea douglasii

Pages