Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Blue carbon dynamics across the Metro Vancouver region
This research project aims to assess the carbon sequestration dynamics of three tidal marshes under different environmental conditions in the Metro Vancouver region. By identifying the site conditions that influence carbon sequestration, areas can be prioritized, and restoration activities can be adapted to increase or maintains the marsh’s ability to do so. This project was done in partnership with Parks Canada and will contribute to a larger study of ‘blue carbon’ across British Columbia. For this project, I collected sediment cores from the eastern portion of Boundary Bay in Delta, BC, Brunswick Point in Ladner, BC, and a constructed salt marsh in Tsawwassen, BC, to assess soil carbon content and carbon stocks. Porewater salinity, vegetation data and depth measurements were collected at these sites as well. Percent carbon content ranged between 3.98 ± 1.48% and 5.78 ± 5.93% between the three marshes and the marsh carbon stock ranged between 93.95 Mg C and 2,994.51 Mg C. Across the three marshes, core carbon stock for the high marsh cores was found to be significantly higher than the core carbon stock for the low marsh cores, suggesting that marsh zonation influences carbon stock. The data analysis and literature review determined that vegetation and porewater salinity had the greatest influence on a marsh’s ability to sequester and store carbon. The results indicate that the high marsh with low salinities and a diverse plant community have the highest carbon sequestration potential. As marshes with conditions similar to that of the Boundary Bay marsh as well as polyhaline marshes should be prioritized for restoration. These findings will aid in the development and implementation of restoration projects to increase a marsh’s ability to sequester carbon., blue carbon, tidal marsh, carbon stock, British Columbia, coastal management, restoration, marsh restoration
Ecological restoration options for Clear Lake and South Lake (Riding Mountain National Park), Manitoba
Options for ecological restoration are discussed for the Clear Lake – South Lake complex of Riding Mountain National Park, Manitoba. This project consisted of a) a review of studies conducted on Clear Lake and South Lake and b) a stream water quality sampling program. The review of previous studies was to gain an in-depth understanding of historical processes which shaped Clear Lake and South Lake. Previous condition, current condition and ecological stressors are all identified based on literature from Riding Mountain National Park. The stream water quality sampling program identifies major sources of nutrients into Clear Lake. Ecological restoration options pertain specifically to the Clear Lake – South Lake complex. South Lake restoration options include supplemental planting, dredging and chemical treatments. A novel technique designed to disrupt wind driven nutrient loading is also discussed. These methods are designed to return the South Basin to a macrophyte dominated system. Addressing hypolimnetic oxygen deficiency, two forms of hypolimnetic aeration are discussed to improve water quality in Clear Lake including a ‘Full lift’ design as well as a Speece Cone. Three options regarding the isthmus and connectivity between Clear Lake and South Lake are examined including a fishway installation and a wattle fence installation.
The effect of prescribed burns on soil characteristics and plant communities in Garry Oak ecosystems. A case study on a three-year post-burn site on Tumbo Island, Gulf Islands National Park Reserve
This research project evaluates the outcomes of returning prescribed fire to endangered Garry oak meadows as a restoration treatment. This project was done in partnership with Parks Canada and involved a case study on a three-year post-burn site on Tumbo Island in the Gulf Islands National Park Reserve. Soil chemical properties were analyzed three years post burn in the summer of 2019 and compared to pre and post-burn vegetation survey results. Analysis identified beneficial changes in soil chemistry still present three years post treatment. Invasive species occurrences increased across the site, regardless of treatment, and around half of the invasive species occurrences were recorded on burn treatments areas in 2018. Prescribed burns on shallow soil Garry oak meadow sites showed beneficial outcomes for soil chemistry, reduced conifer encroachment, increased diversity and Arbutus (Arbutus menziesii) seedling recruitment. These findings aid in determining restoration plans for shallow soil Garry oak meadows, highlighting the numerous benefits from prescribed fire, while also suggesting that additional treatments in conjunction with prescribed fire will be needed to control invasive plants when planning to restore these ecosystems., shallow soil, Garry oak meadows, restoration, prescribed fire, soil nutrients, invasive plant species
The effect of vegetation structure and abiotic variables on oviposition-site selection by amphibians
Assessing restoration success for pond-breeding amphibians frequently focuses on hydrology, water quality and vegetation, while neglecting the requirements of amphibians that use the restored areas for breeding. Both biotic and abiotic conditions can influence oviposition-site selection of amphibians that do not provide parental care. This study examines how vegetation structure and abiotic variables affect oviposition-site selection by amphibians. The goal of my study was to better understand the requirements of pond-breeding amphibians. In 2017, I surveyed egg masses in four ponds at the Sunshine Coast Botanical Garden in Sechelt, B.C. I identified 667 egg masses of four native amphibian species that varied in abundance and species richness among ponds. I recorded five biotic variables (i.e., vegetation cover, vegetation type, stem density, stem diameter, and canopy closure) and two abiotic variables (i.e., water depth and solar radiation) at egg-mass sites and random sites where no egg masses were detected. Logistic regression analysis with backward elimination revealed that stem count (p = 0.008) and water depth (p = 0.0001) significantly influenced oviposition-site selection. The results also showed that higher stem density and shallower water depth increased the likelihood of egg masses being present. My study indicated that quantifying stems in the water column characterized vegetation density better than estimating percent cover of vegetation. Shallow areas that have structurally complex vegetation might provide an advantage for the offspring by increasing refuge, food resources, and favourable thermal conditions for egg development. Hence, restoration projects could incorporate vegetation structure and shallow areas in their pond designs to potentially increase the abundance and diversity of amphibian communities, thereby contributing to successful restoration projects., ecological restoration, amphibians, oviposition, Rana aurora, Pseudacris regilla, Ambystoma gracile, Amystoma macrodactylum, vegetation structure, abiotic variables
Factors limiting the expansion of black-tailed prairie dog colonies at their northern extent
Prairie dogs (Cynomys ludovicianus) are considered a keystone species due to their ecological role in maintaining the prairies. In Canada, they are federally listed as a threatened species. This study was conducted to identify the limiting factors to the expansion of prairie dog colonies in Grasslands National Park, Saskatchewan. I tested different hypotheses to compare landforms, vegetation, and soil characteristics in three treatments: consistently occupied (Consistent), inconsistently occupied (Inconsistent), and never occupied (Buffer) by prairie dogs. I sampled four prairie dog colonies (blocks) from 17 July 2019 to 28 August 2019 using a randomized complete block design. I used ANOVA to test variables for significant differences among treatments. My results showed that hills, water channel, shrublands, grass cover, shrub cover and vegetation height classes (>30 cm) were significantly higher (p <0.05) in Buffer compared to Consistent and Inconsistent. Shrubs and tall vegetation should be mowed down to enhance the expansion of prairie dog colonies for restoring their population., restoration, prairie dogs, Cynomys ludovicianus, colony expansion, barriers, habitat use
Groundwater elevation and chemistry at Camosun Bog, British Columbia, and implications for bog restoration
A bog is a type of wetland with a high water table, acidic soil and is nutrient poor. Camosun Bog is the oldest bog in the Lower Mainland of British Columbia, and remained undisturbed until development of the surrounding residential neighborhood caused changes to its groundwater conditions, threatening its current persistence. The goal of this study is to provide an updated examination of Camosun Bog’s groundwater conditions and to discuss relevant bog restoration measures. Groundwater elevation and chemistry (pH, conductivity, nitrogen and phosphorus) were monitored for several months in 2019. Results indicate that current groundwater elevations are lower in Camosun Bog than they were thirty years ago, especially in the north and northeast regions. Locations in the north and center parts of the open bog experienced groundwater nitrogen enrichment and higher pH, indicating that raising the water table should be the main goal of restoration for Camosun Bog.
Hypolimnetic upwelling in coastal embayments of Lake Ontario; implications for restoration
Coastal wetlands are an important ecosystem in the Great Lakes basin, providing spawning grounds and warm-water refuge for numerous fish and benthic invertebrate species during cold water upwelling events. Urbanization along the northwestern shore of Lake Ontario has led to a depletion of coastal wetlands, replacing them with artificial embayments. Three artificial embayments, the Credit River estuary, and one coastal marsh in Mississauga, ON were studied to determine if the artificial embayments function as warm-water refuge during upwelling events. Temperature loggers were placed in each study site and temperature was recorded every 15 minutes from July to October 2017. Upwelling events were isolated from the data, and frequency, magnitude, and duration of upwelling was determined. Most study sites had a frequency of 4 upwelling events throughout the study period. The average duration of upwellings varied from 30 to 70 hours, and the average temperature change ranged from -7.1ᵒC to -11.9ᵒC. All of the study sites seemed to buffer upwellings by reducing the magnitude of temperature change and increasing the duration of upwelling events to varying degrees. These results will inform the creation of future wetlands, restoration of existing embayments, and conservation of Great Lakes coastal wetlands., ecological restoration, coastal embayments, coastal marsh, upwelling, warm-water refuge, Lake Ontario
Marsh resiliency strategies in the face of sea-level rise: Pilot project opportunities for Fraser River delta tidal marshes
Coastal wetlands are naturally resilient to changing sea levels; however, as rates of sea-level rise increase, the interaction between changing sea-level and ongoing human impacts will be a major driver in future coastal tidal marsh stability. My goal is to provide decision makers with recommendations to increase the resilience of the Fraser River delta front tidal marsh communities over the twenty-first century. I conducted a literature review to (1) examine the current knowledge base regarding effects of sea-level rise on tidal marshes and (2) identify current ecosystem-based adaptation strategies for increasing tidal marsh resilience to sea-level rise. Based on this review, recommendations are made for strategies that could be used to increase tidal marsh resilience in the Fraser River delta. Recommendations include (1) initiating delta-wide marsh accretion modeling to assess tidal marsh vulnerability under possible sea-level rise scenarios and (2) implementing sediment augmentation pilot projects for both direct (e.g., layered sediment lifts) and indirect (e.g., mud motor) sediment augmentation strategies to test ecosystem based adaptive management strategies as part of an adaptive management framework.
A restoration strategy to avert the projected ecological, social and economic risks of Lost Lagoon in Stanley Park, British Columbia
The coastal saltmarsh that once made up Lost Lagoon was isolated into a freshwater impoundment to enable the construction of the Stanley Park Causeway in 1916. Water chemistry, water nutrients, and subsurface sediment were collected in August to October 2017, and it was concluded that Lost Lagoon is experiencing, low DO (average 6 mg/L), high salinity (0.9 ppt), high nutrient loading (TP 0.1 mg/L and TN 0.9 mg/L) and has elevated heavy metals (Cd, Cu, Ni, Pb, and Zn). A general biotic inventory was conducted and results indicated a lack of native species diversity and presence of invasive species, for both flora and fauna. Projected future conditions concluded that Lost Lagoon is prone to stratification and higher temperatures, which is expected to further water impairment including, increases in NH3 and toxic algae blooms. To mitigate this trajectory, a systematic restoration plan was developed to reintroduce tidal flushing into Lost Lagoon from Coal Harbour’s western basin, thereby restoring the degraded ecosystem into a diverse coastal saltmarsh. Hydrogemorphology and flow rates were estimated and as a result a 1.3-m wide water channel was recommended. A planting and long-term monitoring plan that will aid in revitalization of a coastal saltmarsh was developed, alongside a preliminary project budget and schedule. The project feasibility and public response were discussed as constraints, with emphasis on furthering this proposed restoration plan with professional engineering, and First Nations and public consultation., ecological projections, restoration, urban wetland, saltmarsh, intertidal ecosystems
Restoring hydrological connectivity in the Guichon Creek watershed through wetland creation
Urbanization of areas alters the natural hydrology of the land through the creation of impervious surfaces, removal of vegetation, and construction of storm sewer systems. These alterations impact physical processes and the biological communities of our waterways through the introduction of pollutants, creation of uncharacteristic hydrological regimes, and habitat loss and fragmentation. Integration of natural areas in our built environments will mitigate some of these effects and reduce the degradation of streams in urbanized watersheds. Guichon Creek flows through an urbanized environment, which includes the British Columbia Institute of Technology (BCIT) Burnaby campus. A tributary flows into Guichon Creek at the south end of campus and the majority of its flow is from a stormwater sewer which receives runoff from the residential area east of campus. The tributary is approximately 150 metres and runs between a community garden and a small gravel parking lot before entering Guichon Creek. This project proposes restoration of a 2,000 m2 parcel of land between Guichon Creek and the tributary. Restoration activities involve removal of an existing parking lot, management of invasive hybrid Japanese knotweed (Fallopia x bohemica) and Himalayan blackberry (Rubus armeniacus), creation of an off channel wetland, and addition of natural in-stream structures to the tributary. Wetlands provide important hydrological and ecological functions that will contribute to the restoration efforts on Guichon Creek. This wetland will improve hydrological functions of the Guichon Creek floodplain through increased groundwater infiltration, creation of a storage area, and pollutant filtration. Improving these functions is also an important component of making stream ecosystems more resilient to climate change. The wetland will also provide ecological benefits such as improved water quality and creation of amphibian habitat. This project focuses on the creation of habitat for northern red-legged frog (Rana aurora) and the Pacific chorus frog (Psuedacris regilla). Another important component of restoration in an urban environment is creating a connection between people and the environment. Restoration of this space provides opportunities for public involvement and environmental education and awareness. This creates a forum to discuss the effects of urbanization on streams and show people where the runoff from their neighbourhood ends up. Forming that connection between people and their environment is an important step to creating interest and involvement in environmental issues.
A riparian restoration plan for a construction site on the Brunette River
Urbanization has altered riparian ecosystems, resulting in the decline of species that depend on them. The Brunette River in the Lower Mainland of British Columbia is no exception; though it currently supports a range of biotas, many of them are at-risk. These impacts are further accentuated by the expansion of the Trans Mountain Pipeline, which will result in the removal of a portion of critical habitat for the endangered Nooksack Dace. In light of the cultural significance of the basin to Kwikwetlem First Nations, the goal of this plan is to improve conditions at the project site post-construction through the establishment of culturally and ecologically important species and the addition of habitat features. I completed soil, vegetation, and water quality surveys to inform my prescriptions. Recommendations include the management of non-native species using manual and mechanical control methods and the planting of a native riparian community that fits within the confines of human infrastructure. A robust monitoring plan is also provided., critical habitat, exotic species, First Nations, restoration, riparian, urbanization
Using 10-years of population monitoring data to assess breeding productivity of the Oregon Spotted Frog (Rana pretiosa)
Relationships between changing environmental variables and amphibian populations have been understudied. Yet, alterations to temperature and precipitation have been suggested as contributors to the decline of some pond-breeding species, such as the Oregon Spotted Frog (Rana pretiosa). R. pretiosa has been classified as the most endangered amphibian in Canada, yet the cause for its decline is unknown. Therefore, this paper examined associations between temperature and precipitation, and R. pretiosa population trends, using a 10-year data set from two breeding populations in the Lower Mainland of British Columbia. Timing of oviposition was positively related to higher temperature and increased precipitation within both populations (p<0.05). No statistical relationship was determined between egg mass productivity and temperature or precipitation; however, this paper proposes that further research, consistent protocols and longer study periods, is necessary in order to determine environmental variables as possible predictors of population success. This paper recommends the evaluation of breeding success through survivorship studies, as such methods provide insight into productivity as the primary determinant for population recruitment. Further, ecological restoration efforts can be implemented to help ameliorate negative consequences climate change poses on reproductive success., amphibian, climate change, conservation, ecological restoration, endangered, population dynamics, population monitoring, survivorship