It is essential to design and operate buildings with good indoor air quality because people spend most of their time indoors, and their productivity, comfort, and health depend on the quality of the indoor air. In addition to other indoor-air-quality parameters, the indoor humidity and temperature need to be controlled and maintained within acceptable ranges. Elevated indoor humidity creates favorable conditions for mold growth and building-envelope damage. To minimize such problems, it is important that designers have insight into the level of indoor humidity that will be expected in a building operating under a set of conditions and weather variation. In this paper, the results of monitoring the indoor temperature and humidity of four apartment suites with different occupancy levels are reported. Along with the indoor-air conditions, the local outdoor temperature and relative humidity were continuously measured for 17 months. The indoor humidities in the suites were correlated with the outdoor air temperature and humidity and compared with the European indoor climate class model. Moreover, the indoor-temperature and relative-humidity ranges in the four suites during the winter, spring, summer, and fall seasons and the temperature and humidity distributions within the suites are reported., Technical papers, Published. Received: September 22, 2014. Accepted: February 03, 2015. Published online: April 21, 2015.
Proceedings of 2017 IEEE Conference on Communications and Network Security (CNS) in Las Vegas, NV, USA, USA on 9-11 Oct. 2017.We address security and trust in the context of a commercial IP camera. We take a hands-on approach, as we not only define abstract vulnerabilities, but we actually implement the attacks on a real camera. We then discuss the nature of the attacks and the root cause; we propose a formal model of trust that can be used to address the vulnerabilities by explicitly constraining compositionality for trust relationships., Conference paper, Published.
Conference proceedings from ASHRAE IAQ 2013: Environmental Health in Low Energy Buildings, October 15 - 18, 2013 in Vancouver, BC, Canada., Peer reviewed, Conference proceeding
Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field., Peer-reviewed article, Published. Received 8 February 2015; Accepted 1 May 2015.
In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by developing and applying new sophisticated mathematical approaches. Here, we present extensions of 2D singular spectrum analysis (2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction and analysis of 3D features in 3D gene expression patterns., Peer-reviewed article, Published. Received 4 July 2014; Revised 10 September 2014; Accepted 10 September 2014.
Critical boundaries in the early Drosophila embryo are set by morphogenetic gradients. A new quantitative study shows that the placement of one such boundary is more accurate than the gradient thought to set it. Genetic analysis of the accuracy of the process implicates a gene not previously thought to be involved., Peer-reviewed article, Published.
Thermal Performance of Exterior Envelopes of Whole Buildings X International Conference, Clearwater Beach, Florida, USA, December 02, 2007. This climate sensitivity study studied the effects of wind-driven rain on a stucco-clad wall using the advanced hygrothermal model, hygIRC. Simulations were made for a number of climatic conditions based on the moisture index (MI) and for amounts of water deposited inside a wall. The moisture index was based on the severity of a given climate in respect to wall assemblies and the degree of wetting and drying to which a wall could potentially be subjected. The failure criteria was the concurrent occurrence of temperature and relative humidity above thresholds of 10oC and 95% respectively, for ninety consecutive days at any location of wood-based material in the wall., Conference paper, Published. A version of this document is published in: Thermal Performance of Exterior Envelopes of Whole Buildings X International Conference, Clearwater Beach, FL., Dec. 2-7, 2007, pp. 1-15.
Quality of botanical products and raw materials is important to manufacturers, regulators, researchers, and consumers. Many modern botanical quality-assurance schemes set specifications for select phytochemicals and measure against those specifications as one determinant of quality. While numerous publications describe procedures for determining compounds of interest in plant species, few methods have been systematically evaluated for accuracy, precision, or reliability, and often the analysis of finished products is not within the scope of the method. Hydrastis canadensis L., commonly referred to as Goldenseal, is an economically important North American medicinal plant that has been subject to adulteration in commerce. The phytochemicals of interest in the plant are the alkaloids hydrastine, berberine, and canadine. Of interest is also palmatine, an alkaloid found in potential adulterant species but not in goldenseal. In this study, goldenseal materials in raw, capsule, and tablet form, including an Echinacea/ Goldenseal combination product, were extracted with acidified water and acetonitrile and their hydrastine, berberine, canadine, and palmitine content determined by HPLC. The analytical method was optimized and evaluated in a single-laboratory validation study. Calibration curves for hydrastine and berberine were linear from 10 to 150 μ g/mL. The limits of detection for palmatine and canadine were determined to be 0.5 μ g/mL, which translates to detection of levels of 0.004% w/w in test samples. Chromatographic resolution was achieved for all analytes in an isocratic 12.5-min chromatographic run employing a binary mobile phase. Triplicate determinations performed on 10 test materials by two analysts on 3 days resulted in relative standard deviations ranging from 0.9% to 3.4%., Peer-reviewed article, Published.
This paper aims to present a novel smart grid adaptive energy conservation and optimization engine for smart distribution networks. The optimization engine presented in this paper tries to minimize distribution network loss, improve voltage profile of the system and minimize the operating cost of reactive power injection by switchable shunt Capacitor Banks using Advanced Metering Infrastructure data. Moreover, it performs Conservation Voltage Reduction (CVR) and minimizes transformer loss. To accurately weight the optimization engine objective function sub-parts, Fuzzification technique is employed in this paper. Particle Swarm Optimization (PSO) is applied as Volt-VAR Optimization (VVO) algorithm. Substantial benefits of the proposed energy conservation and optimization engine include but not limited to: adequate accuracy and speed, comprehensive objective function, capability of using AMI data as inputs, and ability to determine weighting factors according to the cost of each objective sub-part. To precisely test the applicability of proposed engine, 33-node distribution feeder is used as case study. The result analysis shows that the proposed approach could lead distribution grids to achieve higher levels of optimization and efficiency compared with conventional techniques., Article, Published. Received 27 November 2015, Revised 13 April 2016, Accepted 16 April 2016, Available online 26 April 2016.
In recent years, smart grid technologies such as Distribution Management Systems (DMS) and Advanced Metering Infrastructure (AMI) have created remarkable opportunities for distribution grids in terms of operation, control and optimization. The advent of AMI has created considerable amount of data that can be used in optimization applications. Other smart grid functionalities could increase the performance of energy conservation and optimization solutions. As such, this paper aims to review the main requirements of two important smart grid adaptive energy conservation and optimization solutions called Volt-VAR Optimization and Conservation Voltage Reduction, in terms of control, measurement, communication and standards for grids., Article, Published. Received 13 May 2016, Revised 13 September 2016, Accepted 22 September 2016, Available online 3 October 2016.
The utility sector's transition to renewable energy and the smart grid has already begun. The first step towards smart grid is microgrid, which is a smaller electricity grid with access to all the essential assets of a larger grid. This book provides a glimpse into an actual microgrid project. It supplies a system-level approach to the design of smart Microgrids, covering the entire design process-from roadmap to realization. Detailing lessons learned and pitfalls to avoid in Microgrid technology, the book provides an interdisciplinary approach to design and problem solving for smart microgrids., Book, Published.
Physical activity (PA) must be performed regularly to accrue health benefits. However, the majority of manual wheelchair users do not meet PA recommendations. Existing community-based PA programs for manual wheelchair users appear to work, but effect sizes are small and retention is low. Existing PA programs may not fully implement some psychosocial factors that are strongly linked with PA (eg, autonomy). The use of peers and mobile phone technology in the Smartphone Peer PA Counseling (SPPAC) program represents a novel approach to cultivating a PA-supportive environment for manual wheelchair users., Peer-reviewed article, Published.