BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

Performance of sprayed fiber reinforced polymer strengthened timber beams
A study was carried out to investigate the use of Sprayed Fiber Reinforced Polymer (SFRP) for retrofit of timber beams. A total of 10-full scale specimens were tested. Two different timber preservatives and two different bonding agents were investigated. Strengthening was characterized using load deflection diagrams. Results indicate that it is possible to enhance load-carrying capacity and energy absorption characteristics using the technique of SFRP. Of the two types of preservatives investigated, the technique appears to be more effective for the case of creosote-treated specimens, where up to a 51% improvement in load-carrying capacity and a 460% increase in the energy absorption capacity were noted. Effectiveness of the bonding agent used was dependent on the type of preservative the specimen had been treated with., Peer-reviewed article, Published. Received 26 July 2010; Revised 8 October 2010; Accepted 12 October 2010.
Phase change material's (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate
The current residential buildings are of light weight construction. As such, they tend to frequent indoor air temperatures fluctuations and have been proven detrimental for thermal comfort and mechanical system energy consumption. This is reflected in the energy consumption statistics for residential buildings. More than 62% of the building energy use is towards maintaining comfortable indoor conditions. Phase change materials (PCM); a latent heat thermal storage material, have the potential to increase the thermal mass of these buildings without drastically affecting the current construction techniques. In this paper, the potential of phase change materials is investigated through numerical and experimental studies. The field experimental study is conducted using twin side-by-side buildings exposed to the same interior and exterior boundary conditions, and EnergyPlus, after being benchmarked with the experimental results, is used for the numerical study. The numerical study is carried out for an existing residential apartment unit with particular emphasis on the effects of different design parameters such as orientation and window to wall ratio. Preliminary analyses of experimental data show that phase change materials are effective in stabilizing the indoor air by reversing the heat flow direction. In fact, the indoor air and wall temperature fluctuations are reduced by 1.4 °C and 2.7 °C respectively. Following, benchmarking of the numerical simulation shows confidence levels in predicting the interior conditions since discrepancies between experimental data and numerical data are within tolerance limits of the measuring device. Further, from the analysis of the numerical data, phase change material is effective in moderating the operative temperature but does not translate to significant thermal comfort improvement when evaluated over a night time occupancy regime in the summer. On the contrary, PCM is effective in lowering the heating energy demand by up to 57% during the winter condition., Peer reviewed article, Published. Received 1 October 2015, Revised 22 January 2016, Accepted 23 January 2016, Available online 29 January 2016.
Planning for climate action in British Columbia, Canada
Significant greenhouse gas (GHG) reductions from all sectors of human enterprise are necessary to avoid further effects and reduce the current effects of climate change. Agriculture and the global food system are estimated to contribute to one-third of all anthropogenic GHGs. In British Columbia, Canada, mandated GHG reduction targets and voluntary climate action programs are challenging local governments to include emission reduction targets, policies, and actions within official planning documents. At this early stage of GHG reductions, local government attention does not yet include agriculture but is directed toward the transportation, buildings, and waste management sectors. Given agriculture's contribution to GHG emissions and local government's engagement with GHG mitigation and food system planning, it seems reasonable to anticipate that over time, local governments should and will engage increasingly in reducing GHGs from agriculture. With the goal of advancing agriculture GHG mitigation by local governments, this paper reviews the jurisdictional powers governing agriculture and climate change within British Columbia. It examines how local governments can support mitigation within the sector through their roles in planning, policy, programming, and public engagement, and identifies potential research agenda items., Peer-reviewed article, Published. Submitted 18 April 2011 ; Revised 4 July 2011 and 1 August 2011 ; Accepted 2 September 2011 ; Published online 20 March 2012.
Precision of non-invasive temperature measurement by diffuse reflectance spectroscopy
Diffuse reflectance spectroscopy can be used as a noninvasive probe for measurement of temperature in real time. We have measured the precision of this technique to determine the temperature of Si and GaAs substrates during semiconductor processing. Our results show that the standard deviation of the noninvasive optical technique is less than 1.5 °C for GaAs and less than 2.0 °C for Si over the temperature range 25 °C≪T≪600 °C. This standard deviation compares favorably to that for a type‐K thermocouple used in the same measurements: s.d.≪1.5 °C. These results support the notion that noninvasive optical temperature measurement can be used in semiconductor processing with a precision approaching that of a thermocouple., Peer-reviewed article, Published.
Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells
Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress., Peer-reviewed article, Published. Received: May 16, 2014; Accepted: October 24, 2014; Published: November 24, 2014.
Protracted myelin clearance hinders central primary afferent regeneration following dorsal rhizotomy and delayed neurotrophin-3 treatment
Regeneration within or into the CNS is thwarted by glial inhibition at the site of a spinal cord injury and at the dorsal root entry zone (DREZ), respectively. At the DREZ, injured axons and their distal targets are separated by degenerating myelin and an astrocytic glia limitans. The different glial barriers to regeneration following dorsal rhizotomy are temporally and spatially distinct. The more peripheral astrocytic barrier develops first, and is surmountable by neurotrophin-3 (NT-3) treatment; the more central myelin-derived barrier, which prevents dorsal horn re-innervation by NT-3-treated axons, becomes significant only after the onset of myelin degeneration. Here we test the hypothesis that in the presence of NT-3, axonal regeneration is hindered by myelin degeneration products. To do so, we used the Long Evans Shaker (LES) rat, in which oligodendrocytes do not make CNS myelin, but do produce myelin-derived inhibitory proteins. We show that delaying NT-3 treatment for 1 week in normal (LE) rats, while allowing axonal penetration of the glia limitans and growth within degenerating myelin, results in misdirected regeneration with axons curling around presumptive degenerating myelin ovoids within the CNS compartment of the dorsal root. In contrast, delaying NT-3 treatment in LES rats resulted in straighter, centrally-directed regenerating axons. These results indicate that regeneration may be best optimized through a combination of neurotrophin treatment plus complete clearance of myelin debris., Peer-reviewed article, Published. Received 3 June 2006, Revised 8 September 2006, Accepted 8 September 2006, Available online 22 November 2006.
Purification and characterization of a selective growth regulator for human myelopoietic progenitor cells
A monoclonal antibody, named CAMAL-1, was raised previously in our laboratory to a common antigen of acute myeloid leukemia (CAMAL), and was shown to be highly specific in its recognition of cells from patients with acute (AML) or chronic (CML) myelogenous leukemia. CAMAL was also reported to be prognostic of disease, in that patients whose numbers of CAMAL-1 reactive cells were high, or rose over time, had poorer prognoses and shorter survival times than patients whose CAMAL values were low or decreased. This correlation between CAMAL and disease prognosis led to the discovery that CAMAL-1immunoaffinity-purified leukemic cellular lysates contained a selective growth inhibitory activity for normal myeloid progenitor cells, since the growth of CML progenitors was not inhibited. The work described in this thesis focused primarily on the purification and characterization of the myelopoietic activity present in the CAMAL preparations, and its relationship to the leukemic marker (CAMAL). Initial purifications involved CAMAL-1immunoaffinity chromatography of leukemic cellular lysates, followed by FPLC molecular size fractionation and/or preparative SDS-PAGE. The myelopoietic activity was located within a30-35 kDa molecular weight fraction (P30), and the P30 fraction was consistently found to be selective in its inhibition of normal myeloid progenitors, since the growth of CML progenitors was not inhibited but was, in fact, stimulated. Antibodies were raised to P30 and used in the subsequent purification and characterization of the myelopoietic activity. Amino acid sequence analysis of the N-terminus and P30 tryptic peptides strongly suggested that P30 belonged to the serine protease family of enzymes, and the results obtained from protease assays indicated thatP30 preparations did possess enzyme activity. Prior to the completion of P30 molecular cloning experiments, however, the cDNA sequence for azurocidin/CAP37 was reported, and its predicted amino acid sequence was found to be identical to those obtained from the P30 protein samples. Azurocidin is a proteolytically inactive serine protease homologue, normally present in neutrophilic granules. Purifiedazurocidin did not possess inhibitory activity in normal progenitor cell assays; therefore, in order to isolate the biologic activity from azurocidin and other potentially contaminating proteins, P30 preparations were fractionated by reverse phase HPLC. The rpHPLC profiles were found to be similar to those reported for neutrophilic granules; however, the myelopoietica ctivity was obtained in a single rpHPLC fraction that aligned with the front portion of the azurocidin protein peak. Two dimensional isoelectric focusing/SDS-PAGE analysis of the biologically active rpHPLC fraction confirmed that it contained azurocidin, and no additional protein species were detected. Only the earlier eluting azurocidin rpHPLC fraction mediated the myelopoietic activity, and this fraction was also enriched in the higher molecular weight isoforms of azurocidin. Therefore, it appeared that a variably glycosylated isoform of azurocidin was mediating the biologic effects on myeloid progenitor cells, and because azurocidin obtained from normal neutrophils did not possess the myelopoietic activity, we speculate that the bioactive isoform of azurocidin is present in relatively higher amounts and/or is uniquely synthesized by leukemic cells., Thesis, Published.
Quantification of pyrrolizidine alkaloids in North American plants and honey by LC-MS
Pyrrolizidine alkaloids (PAs) are a class of naturally occurring compounds produced by many flowering plants around the World. Their presence as contaminants in food systems has become a significant concern in recent years. For example, PAs are often found as contaminants in honey through pollen transfer. A validated method was developed for the quantification of four pyrrolizidine alkaloids and one pyrrolizidine alkaloidN-oxide in plants and honey grown and produced in British Columbia. The method was optimised for extraction efficiency from the plant materials and then subjected to a single-laboratory validation to assess repeatability, accuracy, selectivity, LOD, LOQ and method linearity. The PA content in plants ranged from1.0 to 307.8 µg/g with repeatability precision between 3.8 and 20.8% RSD. HorRat values were within acceptable limits and ranged from 0.62 to 1.63 for plant material and 0.56–1.82 for honey samples. Method accuracy was determined through spike studies with recoveries ranging from 84.6 to 108.2% from the raw material negative control and from 82.1–106.0 % for the pyrrolizidine alkaloids in corn syrup. Based on the findings in this single-laboratory validation, this method is suitable for the quantitation of lycopsamine, senecionine, senecionineN-oxide, heliosupine and echimidine in common comfrey (Symphytum officinale), tansy ragwort (Senecio jacobaea), blueweed (Echium vulgare) and hound’s tongue (Cynoglossum officinale)and for PA quantitation in honey and found that PA contaminants were present at low levels in BC honey., Peer-reviewed article, Published. Received 4 June 2015; accepted 20 September 2015.
A quantitative study of cotyledon positioning in conifer development
The number of cotyledons in angiosperm monocots and dicots is tightly constrained. But in the gymnosperm Pinaceae (pine family), which includes many of the conifers, cotyledon number ( nc) can vary widely, commonly from 2 to 12. Conifer cotyledons form in whorled rings on a domed embryo geometry. We measured the diameter of embryos and counted the cotyledons to determine the radial positioning of the whorl and the circumferential spacing between cotyledons. Results were similar between Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco), Sitka spruce ( Picea sitchensis (L.) H.Karst .), and larch ( Larix × leptoeuropaea, synonymous with L. × marschlinsii Coaz), indicating a common mechanism for cotyledon positioning in conifers. Disrupting transport of the growth regulator auxin (with 1- N-naphthylphthalamic acid (NPA)) led to cup-shaped embryos, indicating that whorl (ring) formation is separable from cotyledon patterning within the ring. NPA inhibits cotyledon outgrowth, but not the spacing (distance) between cotyledons. The NPA effect is direct; it does not operate indirectly on embryo size. These results support a hierarchical model for cotyledon positioning in conifers, in which a first stage (not requiring auxin transport) sets the whorl position, constraining the second stage (which requires auxin transport) to form cotyledons within this whorl. Similarly, recent studies in Arabidopsis have shown that different components of complex developmental patterns can have different transport properties; this aspect of patterning may be shared across plants., Peer-reviewed article, Published. Received 27 November 2015. Accepted 8 April 2016.
Quasi real-time ZIP load modeling for Conservation Voltage Reduction of smart distribution networks using disaggregated AMI data
This paper aims to investigate quasi real-time ZIP load models for new Smart Grid-based Volt-VAR Optimization (VVO) techniques. As recent VVO solutions are able to perform in quasi real-time using Advanced Metering Infrastructure (AMI) data, more accurate load modeling could give distribution network operators and/or planners more precise Conservation Voltage Regulation (CVR) and energy saving values at each operating time stage. Furthermore, more accurate load modeling of each quasi real-time stage could improve VVO efficiency. As type, amount and operating time of each residential appliance varies throughout a day, this paper aims to discover ZIP load model of each quasi real-time stage separately through disaggregated data (i.e. decomposing residential load consumption into home appliance consumptions). This paper shows that the energy conservation achieved by CVR operation through presented quasi real-time ZIP load modeling could lead AMI-based VVO solutions to higher level of accuracy and data resolution compared with conventional techniques. Therefore, this paper primarily introduces a new quasi real-time AMI-based VVO engine. Then, it investigates ZIP load model of each quasi real-time stage through statistical data to conserve energy consumption. To check the authenticity and the applicability of presented model in a whole system, 33-node distribution feeder is employed., Published. Received 16 March 2015, Revised 14 May 2015, Accepted 3 June 2015, Available online 2 July 2015.
Raphe-spinal neurons display an age-dependent differential capacity for neurite outgrowth compared to other brainstem-spinal populations
Functional regeneration of brainstem–spinal pathways occurs in the developing chick when the spinal cord is severed prior to embryonic day (E) 13. Functional spinal cord regeneration is not observed in animals injured after E13. This developmental transition from a permissive to a restrictive repair period may be due to the formation of an extrinsic inhibitory environment preventing axonal growth, and/or an intrinsic inability of mature neurons to regenerate. Here, we investigated the capacity of specific populations of brainstem–spinal projection neurons to regrow neurites in vitro from young (E8) versus mature (E17) brainstem explants. A crystal of carbocyanine dye (DiI) was implanted in ovo into the E5 cervical spinal cord to retrogradely label brainstem–spinal projection neurons. Three or 12 days later, discrete regions of the brainstem containing DiI-labeled neurons were dissected to produce explant cultures grown in serum-free media on laminin substrates. The subsequent redistribution of DiI into regenerating processes permitted the study of in vitro neurite outgrowth from identified brainstem–spinal neurons. When explanted on E8, i.e., an age when brainstem–spinal neurons are normally elongating through the spinal cord and are capable of in vivo functional regeneration, robust neurite outgrowth was observed from all brainstem populations, including rubro-, reticulo-, vestibulo-, and raphe–spinal neurons. In contrast, when explanted on E17, robust neurite outgrowth was seen only from raphe-spinal neurons. Neurite outgrowth from raphe-spinal neurons was 5-hydroxy-tryptamine immunoreactive. This study demonstrates that in growth factor-free environments with permissive growth substrates, neurite outgrowth from brainstem–spinal neurons is dependent on both neuronal age and phenotype., Peer-reviewed article, Published. Received 22 February 2000; Accepted 25 May 2000; Available online 25 May 2002.
Real-time adaptive VVO/CVR topology using multi-agent system and IEC 61850-based communication protocol
This paper proposes a new approach for real-time and adaptive Volt/VAr optimization (VVO)/conservation voltage reduction (CVR) system using Intelligent Agents, communicating through IEC 61850 Goose Messaging Protocol. The paper also proposes new real-time adaptive VVO/CVR algorithms tailored for different service level targets and system topologies. The paper argues that each of these variations requires different Intelligent Agent Systems, data structures, and communication requirements. To test the applicability of the VVO/CVR optimization engine, a modified IEEE 34 Node system is used as case study., Article, Published
Real-time co-simulation platform for Smart Grid Volt-VAR Optimization using IEC 61850
This paper presents an implementation of an IEC 61850-based real-time co-simulation platform for verification of the performance of a volt-VAR optimization (VVO) engine for smart distribution networks. The proposed VVO engine is able to minimize grid loss, volt-VAR control asset operational costs, and conservation voltage reduction operational costs through its comprehensive objective functions, weighted by fuzzification using advanced metering infrastructure (AMI) data. The optimization engine receives the AMI data stream through measurement aggregators. Moreover, it sends control commands to volt-VAR control components modeled in real-time digital simulator (RTDS) through DNP.3 protocol. To check the performance and the precision of proposed VVO, a fault scenario is imposed upon the system. IEC 61850 GOOSE messages are generated and sent to change the status of specified breakers, while the VVO engine receives system reconfiguration commands via IEC61850 Manufacturing Message Specification (MMS) protocol. The results of the study on 33-node feeder showed adequate performance of proposed VVO in grid operating scenarios., Article, Published.
Real-time control of a video game with a direct brain-computer interface
Mason and Birch have developed a direct brain–computer interface for intermittent control of devices such as environmental control systems and neuroprotheses. This EEG-based brain switch, named the LF-ASD, has been used in several off-line studies, but little is known about its usability with real-world devices and computer applications. In this study, able-bodied individuals and people with high-level spinal injury used the LF-ASD brain switch to control a video game in real time. Both subject groups demonstrated switch activations varying from 30% to 78% and false-positive rates in the range of 0.5% to 2.2% over three 1-hour test sessions. These levels correspond to switch classification accuracies greater than 94% for all subjects. The results suggest that subjects with spinal cord injuries can operate the brain switch to the same ability as able-bodied subjects in a real-time control environment. These results support the findings of previous studies., Peer-reviewed article, Published.
Relationship between neurological disorders and heart disease
There appears to be an increased risk of cardiovascular disease (CVD) among individuals with spinal cord injury. Quantitative data concerning the risk of heart disease among individuals with other neurological disorders (NDs) are not available. Our aim was to estimate the prevalence of heart disease among individuals with NDs and to compare their risk with a control group., Article, Published. Received: September 19, 2014 ; Accepted: January 05, 2015 ; Published online: February 17, 2015 ; Issue release date: March 2015.
Report on key points arising from visioning process on prosthetic and orthotic education done at the British Columbia Institute of Technology
The Prosthetics and Orthotics Department at the British Columbia Institute of Technology (BCIT) in Vancouver, Canada, has recently completed a visioning process which was done as part of a curriculum review. This report presents and discusses the key points emerging from the process. It is anticipated that the results of the visioning process will provide a basis for a major curriculum revision to the BCIT’s prosthetics and orthotics program. The intent of a curriculum review is to determine whether an educational program’s curriculum is current and relevant with respect to providing students with entry-level skills for the workforce. It involves examining the current scope of practice and competencies of the profession in question and then reflecting back on the curriculum to determine whether these competencies are being taught adequately. Visioning attempts to determine not what entry-level skills graduates require but, instead, what knowledge and skills students need to meet the challenges of the workplace approximately 10 to 15 years into the future., Peer-reviewed article, Published.

Pages