BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

Interaction with an edu-game
We present the results of a study that explored the emotions experienced by students during interaction with an educational game for math (Heroes of Math Island). Starting from emotion frameworks in affective computing and education, we considered a larger set of emotions than in related research. For emotion labeling, we started from a standard methodology that relies on trained judges to report emotions over 20-s intervals, however, we asked judges to report all observed emotions in each interval, as opposed to only choosing one, as is standard practice. This variation allows us to discuss the appropriateness of this interval for emotion labeling. We present a detailed analysis of interrater reliability, both aggregated and over individual students, that considers not only labeling agreement among judges in terms of emotion type, but also with respect to the number of emotions detected. We also provide an analysis based on in-depth one-to-one interviews with judges, to gain insights on the challenges they encountered in labeling emotions., Peer reviewed, Peer reviewed article, First Online: 07 January 2016., Learning, Educational games, Emotion labeling, Interrater agreement, Interviewing judges, Affective states
Interaction with an edu-game: a detailed analysis of student emotions and judges' perceptions
We present the results of a study that explored the emotions experienced by students during interaction with an educational game for math (Heroes of Math Island). Starting from emotion frameworks in affective computing and education, we considered a larger set of emotions than in related research. For emotion labeling, we started from a standard methodology that relies on trained judges to report emotions over 20-s intervals, however, we asked judges to report all observed emotions in each interval, as opposed to only choosing one, as is standard practice. This variation allows us to discuss the appropriateness of this interval for emotion labeling. We present a detailed analysis of interrater reliability, both aggregated and over individual students, that considers not only labeling agreement among judges in terms of emotion type, but also with respect to the number of emotions detected. We also provide an analysis based on in-depth one-to-one interviews with judges, to gain insights on the challenges they encountered in labeling emotions., Not peer reviewed, Article
Maintenance scheduling of Volt-VAR control assets in smart distribution networks using advanced metering infrastructure
This paper investigates a novel approach for maintenance scheduling of volt-VAR control components (VVCCs) of distribution networks with the aid of new generation of volt-VAR optimization (VVO) solutions called quasi-real-time VVO. The new quasi-real-time VVO technique optimizes distribution network using advanced metering infrastructure (AMI) data of each quasi-real-time stage. As this VVO performs automatically and online, it is necessary for VVCCs to undergo maintenance without disturbing VVO performance. Moreover, the lost benefits that could be gained by online VVO have to be minimized. Hence, this paper proposes an AMI-based VVO consisting of a VVO engine and a maintenance scheduling engine (MSE) that operate in tandem to optimize distribution network and find the optimal maintenance scheduling of different VVCCs. To test the accuracy and the applicability of the proposed solution, a 33-node distribution feeder is employed. Furthermore, five different maintenance scenarios are investigated to check the proposed VVO performance. The results prove that the integration of VVO with MSE could be a reliable approach that can solve maintenance scheduling of VVCCs without interrupting and/or resetting VVO., Article, Published
Measurement of the sound absorption characteristics of vegetative roofs
Vegetative roofs have the potential to provide excellent external/internal sound isolation due to their high mass, low stiffness and their damping effect, and to provide a high level of sound absorption due to the low impedance of the vegetative substrate layer. The acoustical characteristics of vegetative roofs provide ecological contributions to the urban environment through a reduction of noise pollution from aircraft, elevated transit systems, and industrial noise. Vegetative roofs can reduce sound transmission into the interior of buildings, contributing to improved room acoustics through a reduction in noise and hence a reduction in distraction and stress (Connelly & Hodgson 2008). Through surface absorption, vegetative roofs will affect the propagation and build-up of positive and negative sounds and reduce reverberation in enclosed rooftop areas, altering the quality of the soundscape and the habitability of rooftops. Vegetative roofs can be comprised of various material layers: root barrier, water reservoir/drainage layer, filter fabric, substrates and plants. The layer thought to have the most significant effect on the vegetative roof’s acoustical characteristics is the layer of the vegetation and substrate. The vegetative substrate is complex to characterize; it varies in terms of the depth of substrate, the substrate constituents and physical properties, the plant’s aerial biomass and root structure, as well as the dynamic in-situ microclimatic and conditions which vary over season and time., Article, Published.
A novel Volt-VAR Optimization engine for smart distribution networks utilizing Vehicle to Grid dispatch
In recent years, Smart Grid technologies such as Advanced Metering, Pervasive Control, Automation and Distribution Management have created numerous control and optimization opportunities and challenges for smart distribution networks. Availability of Co-Gen loads and/or Electric Vehicles (EVs) enable these technologies to inject reactive power into the grid by changing their inverter’s operating mode without considerable impact on their active power operation. This feature has created considerable opportunity for distribution network planners to explore if EVs could be used in the distribution network as reliable VAR suppliers. It may be possible for network operators to employ some EVs as VAR suppliers for future distribution grids. This paper proposes an innovative Smart Grid-based Volt-VAR Optimization (VVO) engine, capable of minimizing system power loss cost as well as the operating cost of switched Capacitor Banks, while optimizing the system voltage using an improved Genetic Algorithm (GA) with two levels of mutation and two levels of crossover. The paper studies the impact of EVs with different charging and penetration levels on VVO in different operating scenarios. Furthermore, the paper demonstrates how a typical VVO engine could benefit from V2G’s reactive power support. In order to assess V2G impacts on VVO and test the applicability of the proposed VVO, revised IEEE-123 Node Test Feeder in presence of various load types is used as case study., Article, Published. Received 24 May 2014, Revised 23 July 2015, Accepted 29 July 2015, Available online 8 August 2015.
NRC-IRC develops evaluation protocol for innovative vapour barrier
Vapour barriers were originally intended to keep building assemblies from getting wet, but they can sometimes end up preventing assemblies from drying out. An innovative new product to manage moisture accumulation in the building envelope, however, may be able to address both issues: while the product acts as a vapour barrier under most conditions, it also allows excess moisture to escape. The Canadian Construction Materials Centre (CCMC) set out to determine whether this product can serve as a vapour barrier and an air barrier system and whether it conformed to the intent of applicable building code requirements. In collaboration with NRC-IRC researchers, CCMC developed a testing protocol for its evaluation, which was based on laboratory testing requirements for vapour diffusion, air leakage control and durability., Article, Published.
Quasi real-time ZIP load modeling for Conservation Voltage Reduction of smart distribution networks using disaggregated AMI data
This paper aims to investigate quasi real-time ZIP load models for new Smart Grid-based Volt-VAR Optimization (VVO) techniques. As recent VVO solutions are able to perform in quasi real-time using Advanced Metering Infrastructure (AMI) data, more accurate load modeling could give distribution network operators and/or planners more precise Conservation Voltage Regulation (CVR) and energy saving values at each operating time stage. Furthermore, more accurate load modeling of each quasi real-time stage could improve VVO efficiency. As type, amount and operating time of each residential appliance varies throughout a day, this paper aims to discover ZIP load model of each quasi real-time stage separately through disaggregated data (i.e. decomposing residential load consumption into home appliance consumptions). This paper shows that the energy conservation achieved by CVR operation through presented quasi real-time ZIP load modeling could lead AMI-based VVO solutions to higher level of accuracy and data resolution compared with conventional techniques. Therefore, this paper primarily introduces a new quasi real-time AMI-based VVO engine. Then, it investigates ZIP load model of each quasi real-time stage through statistical data to conserve energy consumption. To check the authenticity and the applicability of presented model in a whole system, 33-node distribution feeder is employed., Published. Received 16 March 2015, Revised 14 May 2015, Accepted 3 June 2015, Available online 2 July 2015.
Real-time adaptive VVO/CVR topology using multi-agent system and IEC 61850-based communication protocol
This paper proposes a new approach for real-time and adaptive Volt/VAr optimization (VVO)/conservation voltage reduction (CVR) system using Intelligent Agents, communicating through IEC 61850 Goose Messaging Protocol. The paper also proposes new real-time adaptive VVO/CVR algorithms tailored for different service level targets and system topologies. The paper argues that each of these variations requires different Intelligent Agent Systems, data structures, and communication requirements. To test the applicability of the VVO/CVR optimization engine, a modified IEEE 34 Node system is used as case study., Article, Published
Real-time co-simulation platform for Smart Grid Volt-VAR Optimization using IEC 61850
This paper presents an implementation of an IEC 61850-based real-time co-simulation platform for verification of the performance of a volt-VAR optimization (VVO) engine for smart distribution networks. The proposed VVO engine is able to minimize grid loss, volt-VAR control asset operational costs, and conservation voltage reduction operational costs through its comprehensive objective functions, weighted by fuzzification using advanced metering infrastructure (AMI) data. The optimization engine receives the AMI data stream through measurement aggregators. Moreover, it sends control commands to volt-VAR control components modeled in real-time digital simulator (RTDS) through DNP.3 protocol. To check the performance and the precision of proposed VVO, a fault scenario is imposed upon the system. IEC 61850 GOOSE messages are generated and sent to change the status of specified breakers, while the VVO engine receives system reconfiguration commands via IEC61850 Manufacturing Message Specification (MMS) protocol. The results of the study on 33-node feeder showed adequate performance of proposed VVO in grid operating scenarios., Article, Published.
Relationship between neurological disorders and heart disease
There appears to be an increased risk of cardiovascular disease (CVD) among individuals with spinal cord injury. Quantitative data concerning the risk of heart disease among individuals with other neurological disorders (NDs) are not available. Our aim was to estimate the prevalence of heart disease among individuals with NDs and to compare their risk with a control group., Article, Published. Received: September 19, 2014 ; Accepted: January 05, 2015 ; Published online: February 17, 2015 ; Issue release date: March 2015.
A roadmap to integration
Smart grid-related blogs, newsletters, and conferences have endured numerous debates and discussions around the issue of whether or not the smart grid integrated correctly. While most debates focus on approach, methodology, and the sequence of what to be done, there is insufficient discussion about actually meant by "smart grid integration." This article attempts to present a holistic view of integration and argues for the importance of developing system integration “maps” based on a utility's strategic smart grid road map., Article, Published
Sensitive homes
Conference proceedings from ASHRAE IAQ 2013: Environmental Health in Low Energy Buildings, October 15 - 18, 2013 in Vancouver, BC, Canada., Peer reviewed, Conference proceeding
Smart grid adaptive energy conservation and optimization engine utilizing Particle Swarm Optimization and Fuzzification
This paper aims to present a novel smart grid adaptive energy conservation and optimization engine for smart distribution networks. The optimization engine presented in this paper tries to minimize distribution network loss, improve voltage profile of the system and minimize the operating cost of reactive power injection by switchable shunt Capacitor Banks using Advanced Metering Infrastructure data. Moreover, it performs Conservation Voltage Reduction (CVR) and minimizes transformer loss. To accurately weight the optimization engine objective function sub-parts, Fuzzification technique is employed in this paper. Particle Swarm Optimization (PSO) is applied as Volt-VAR Optimization (VVO) algorithm. Substantial benefits of the proposed energy conservation and optimization engine include but not limited to: adequate accuracy and speed, comprehensive objective function, capability of using AMI data as inputs, and ability to determine weighting factors according to the cost of each objective sub-part. To precisely test the applicability of proposed engine, 33-node distribution feeder is used as case study. The result analysis shows that the proposed approach could lead distribution grids to achieve higher levels of optimization and efficiency compared with conventional techniques., Article, Published. Received 27 November 2015, Revised 13 April 2016, Accepted 16 April 2016, Available online 26 April 2016.
Smart grid adaptive volt-VAR optimization
In recent years, smart grid technologies such as Distribution Management Systems (DMS) and Advanced Metering Infrastructure (AMI) have created remarkable opportunities for distribution grids in terms of operation, control and optimization. The advent of AMI has created considerable amount of data that can be used in optimization applications. Other smart grid functionalities could increase the performance of energy conservation and optimization solutions. As such, this paper aims to review the main requirements of two important smart grid adaptive energy conservation and optimization solutions called Volt-VAR Optimization and Conservation Voltage Reduction, in terms of control, measurement, communication and standards for grids., Article, Published. Received 13 May 2016, Revised 13 September 2016, Accepted 22 September 2016, Available online 3 October 2016.
Sound transmission loss of extensive green roofs
A study was conducted to review the acoustical features and the potential contributions of green roofs to the acoustical environment, to investigate sound transmission theory, and to report on new empirical findings on the transmission loss of green roofs. The results of the study shows that existing sound transmission algorithms do not adequately predict TL of light-weight roof system or green roofs, nor describe the potential effect of moisture content of the substrate. The sound energy is dissipated in the substrate and provides a mass loading and damping effect on to the light-weight roof deck. The study also suggested that green roofs will provide a higher TL than the additional ceiling element and improve TL throughout the full architectural frequency range, specifically desirable in residential and institutional occupancies that are developed below aircraft flight paths., Article, Published.
Students use new lab to test electrical and cybersecurity systems
2016 | 2017 Project Highlights Short piece about BCIT Smart Microgrid designs., Article, Published

Pages