BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Analysis of pattern precision shows that Drosophila segmentation develops substantial independence from gradients of maternal gene products
We analyze the relation between maternal gradients and segmentation in Drosophila, by quantifying spatial precision in protein patterns. Segmentation is first seen in the striped expression patterns of the pair-rule genes, such as even-skipped (eve). We compare positional precision between Eve and the maternal gradients of Bicoid (Bcd) and Caudal (Cad) proteins, showing that Eve position could be initially specified by the maternal protein concentrations but that these do not have the precision to specify the mature striped pattern of Eve. By using spatial trends, we avoid possible complications in measuring single boundary precision (e.g., gap gene patterns) and can follow how precision changes in time. During nuclear cleavage cycles 13 and 14, we find that Eve becomes increasingly correlated with egg length, whereas Bcd does not. This finding suggests that the change in precision is part of a separation of segmentation from an absolute spatial measure, established by the maternal gradients, to one precise in relative (percent egg length) units., Peer-reviewed article, Published.
Making the body plan
We quantify fluctuations in protein expression for three of the segmentation genes in the fruit fly, Drosophila melanogaster. These proteins are representative members of the first three levels of a signalling hierarchy which determines the segmented body plan: maternal (Bicoid protein); gap (Hunchback protein); and pair-rule (Even-skipped protein). We quantify both inter-embryo and inter-nucleus (within a single embryo) variability in expression, especially with respect to positional specification by concentration gradient reading. Errors are quantified both early and late in cleavage cycle 14, during which the protein patterns develop, to study the dynamics of error transmission. We find that Bicoid displays very large positional errors, while expression of the downstream genes, Hunchback and Even-skipped, displays far more precise positioning. This is evidence that the pattern formation of the downstream proteins is at least partially independent of maternal signal, i. e. evidence against simple concentration gradient reading. We also find that fractional errors in concentration increase during cleavage cycle 14., Peer-reviewed article, Published. Received 30 September 2002; Accepted 12 December 2002; Published 16 December 2002.
Noise in the segmentation gene network of Drosophila, with implications for mechanisms of body axis specification
Specification of the anteroposterior (head-to-tail) axis in the fruit fly Drosophila melanogaster is one of the best understood examples of embryonic pattern formation, at the genetic level. A network of some 14 segmentation genes controls protein expression in narrow domains which are the first manifestation of the segments of the insect body. Work in the New York lab has led to a databank of more than 3300 confocal microscope images, quantifying protein expression for the segmentation genes, over a series of times during which protein pattern is developing (http://flyex.ams.sunysb.edu/FlyEx/). Quantification of the variability in expression evident in this data (both between embryos and within single embryos) allows us to determine error propagation in segmentation signalling. The maternal signal to the egg is highly variable, with noise levels more than several times those seen for expression of downstream genes. This implies that error suppression is active in the embryonic patterning mechanism. Error suppression is not possible with the favoured mechanism of local concentration gradient reading for positional specification. We discuss possible patterning mechanisms which do reliably filter input noise., Peer-reviewed article, Published.