BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Community Energy Storage impacts on smart grid adaptive Volt-VAR Optimization of distribution networks
Accepted in 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG 2016), Jun. 2016, Vancouver, BC, Canada. This paper aims to investigate Community Energy Storage (CES) impacts on AMI-based Volt-VAR Optimization (VVO) solutions for advanced distribution networks. CES is one of the technologies employed to improve system stability, reliability and quality. As such, it could have considerable impacts on voltage control, reactive power optimization and energy conservation. Conservation Voltage Reduction (CVR) is one of the main tasks of advanced VVO engines in distribution networks. Moreover, in order to check the performance of the discussed VVO engine in the presence of CES during peak time intervals, 33-node distribution feeder is employed. The results of this paper show significant improvement in the performance of the VVO engine when CES is forced to discharge in peak times. Moreover, the results present how CES could affect Volt-VAR Control Component (VVCC) switching and how it affects the energy conservation efficiency., Conference paper, Published.
Developing safe fall strategies for lower limb exoskeletons
Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR) QEII Centre, London, UK, July 17-20, 2017. One of the main challenges in the use of a powered lower limb exoskeleton (LLE) is to ensure that balance is maintained throughout the operation of the device. Since no control strategy has yet been implemented that prevents falls in the case of a loss of balance, head or other serious injuries may occur during independent use of LLEs in the event of a fall. These safety concerns limit LLEs in the community to supervised use only. Using the backward fall as a model, we used optimization techniques to develop safe fall control strategies in order to avoid head impact and mitigate the impact velocity of the hips. From available human biomechanics data, we first developed an optimization methodology to study falls of healthy people. The results showed similar kinematic and dynamic characteristics to findings of previous studies on real-life human falls. Second, we extended the optimization methodology to include characteristics of a hypothetical LLE and to generate optimal joint trajectories and optimal torque profiles for the fall duration. The results revealed that by applying the optimal fall strategy, the severity of a simulated fall was minimized compared to when the device fell with locked joints (i.e., how currently used exoskeletons fall): head impact was avoided and hip impact velocity was reduced by more than 50%., Conference paper, Published.
Maintenance scheduling of Volt-VAR control assets in smart distribution networks using advanced metering infrastructure
This paper investigates a novel approach for maintenance scheduling of volt-VAR control components (VVCCs) of distribution networks with the aid of new generation of volt-VAR optimization (VVO) solutions called quasi-real-time VVO. The new quasi-real-time VVO technique optimizes distribution network using advanced metering infrastructure (AMI) data of each quasi-real-time stage. As this VVO performs automatically and online, it is necessary for VVCCs to undergo maintenance without disturbing VVO performance. Moreover, the lost benefits that could be gained by online VVO have to be minimized. Hence, this paper proposes an AMI-based VVO consisting of a VVO engine and a maintenance scheduling engine (MSE) that operate in tandem to optimize distribution network and find the optimal maintenance scheduling of different VVCCs. To test the accuracy and the applicability of the proposed solution, a 33-node distribution feeder is employed. Furthermore, five different maintenance scenarios are investigated to check the proposed VVO performance. The results prove that the integration of VVO with MSE could be a reliable approach that can solve maintenance scheduling of VVCCs without interrupting and/or resetting VVO., Article, Published
Treatment of douglas-fir heartwood thermomechanical pulp with laccases
Douglas-fir heartwood thermomechanical pulp was treated with laccase enzymes at 25 and 50°C with and without added oxygen. The treated pulps were cleached with hudrogen peroxide at increasing alkali charges. Laccase treatments without added oxygen increased bleached brightness by 1.5-2.5 pts ISO, and decreased hydrogen peroxide consumption by 15-20%. The enzyme treatments were not enhanced when supplemented with oxygen. When the effectiveness of four different laccase enzymes was compared for the treatment of Douglas-fir heartwood thermomechanical pulp, there were no significant differences found in the performance among the enzymes. Possible explanations for the observed results are given., Peer-reviewed article, Published.