BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

Energy rating of polyurethane spray foamed walls
Proceedings of 4th International Building Physics Conference: 15 June 2009, Istanbul, Turkey. This is the first of a series of papers to present the results of this major project. In this paper, an overview of the project, its objectives and the theoretical approach to determine the WER are presented. A description of air leakage and R-value test procedures, wall samples construction and the experimental results of two walls and a sample of the analytical results of the same two walls will also be presented. Future papers will summa-rise the experimental and analytical results of the remaining walls, along with the results of the computer modeling of the air leakage and thermal performance of all the walls tested in this project., Conference paper, Published. A version of this document is published in: 4th International Building Physics Conference, Istanbul, Turkey, June 15-18, 2009, pp. 1-8.
Enhancing student engagement and learning effectiveness through multi-role contributions and collaborative exams
This project proposes teaching-learning coupling as students take different roles during the course, from being learners, teachers, and proponents; finally, students take exams in a collaborative manner – initially, their exam is done individually followed by a team consultation period for the exam completion., Not peer reviewed, report
Environmental regulation, asymmetric information, and moral hazard
This paper presents a model of environmental regulation in the presence of measurement costs and asymmetric information. Environmental regulation can be viewed as a form of agency problem where the polluting firms may have better information about the true level of their abatement activities than the regulator. If certain aspects of environmental quality are costly to measure, regulators may resort to proxies to infer information about environmental quality. This may allow firms to circumvent the regulatory constraints by maximizing along those margins that are costly to measure. This problem is especially acute when a single firm produces multiple pollutants., Essay, Published.
Evaluating the use of potentially hazardous secondary aggregates in concrete based on life-cycle effects on water pollution
Proceedings from the 28th International Conference on Solid Waste Technology and Management, Philadelphia, PA U.S.A, March 10-13, 2013., Peer reviewed, Conference proceeding
Evaluation of the thermal performance of innovative pre-fabricated wall systems through field testing
Proceedings of the 3rd Building Enclosure Science & Technology (BEST3) Conference, Atlanta, USA, April 2-4, 2012. The thermal performance of two innovative pre-fabricated wood-frame wall systems was evaluated in comparison with a conventional 2x6 wood frame wall through one year’s field monitoring on BCIT’s Building Envelope Test Facility. Prefabricated wall system I has 4” Expanded Polystyrene (EPS) infill in the stud cavity with 1” additional EPS added on the interior side of 2x4 wood stud. Prefabricated wall system II has 4” EPS infill in the stud cavity only. The conventional 2x6 wood frame wall has 5-1/2” fiberglass insulation infill in the stud cavity. The effective thermal efficiency of these test walls is evaluated in terms of heat flux, effective in-situ R-values, and temperature distribution. The heat flux measurements show that, in comparison with the conventional 2x6 wood frame wall, prefabricated wall system I with 4” EPS infill in the stud cavity has 5.1% less heat loss and 16% less heat gain and the prefabricated wall system II with 1" extra EPS has 22.9% less heat loss and 37.5% less heat gain. The improvement of thermal efficiency in the prefabricated wall systems is mainly attributed to the significant improvement over the stud areas. Estimated effective R-values over the winter months from December 2008 to March 2009 show that the R-value over the stud area in prefabricated wall system I is improved by 32.7% while the R-value over the cavity area is reduced by 8.7%, resulting in a net improvement of effective wall R-value by 2.9%; and the R-value over the stud area in prefabricated wall system II is improved by 112.3% with only a 2.6% improvement in the R-value over the cavity area, resulting in a net improvement of effective wall R-value by 26.5%. Temperature measurements show that the interior surface temperatures over the stud area in the conventional wall fluctuate much more and are higher during the summer months and lower during the winter months compared to the prefabricated systems, due to the thermal bridging effect of the stud., Conference paper, Published.
Evolution in silico of genes with multiple regulatory modules on the example of the Drosophila segmentation gene hunchback
Proceedings of 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) on 9-12 May 2012 in San Diego, CA, USA. We use in silico evolution to study the generation of gene regulatory structures. A particular area of interest in evolutionary development (evo-devo) is the correspondence between gene regulatory sequences on the DNA (cis-regulatory modules, CRMs) and the spatial expression of the genes. We use computation to investigate the incorporation of new CRMs into the genome. Simulations allow us to characterize different cases of CRM to spatial pattern correspondence. Many of these cases are seen in biological examples; our simulations indicate relative advantages of the different scenarios. We find that, in the absence of specific constraints on the CRM-pattern correspondence, CRMs controlling multiple spatial domains tend to evolve very quickly. Genes constrained to a one-to-one CRM-pattern domain correspondence evolve more slowly. Of these, systems in which pattern domains appear in a particular order in evolution, as in insect segmentation mechanisms, take the longest time in in silico evolutionary searches. For biological cases of this type, it is likely that other selective advantages outweigh the time costs., Conference paper, Published.
Experimental determination of intrinsic drosophila embryo coordinates by evolutionary computation
Proceedings of 8th IAPR International Conference, PRIB 2013, Nice, France, June 17-20, 2013. Early fruit fly embryo development begins with the formation of a chemical blueprint that guides cellular movements and the development of organs and tissues. This blueprint sets the intrinsic spatial coordinates of the embryo. The coordinates are curvilinear from the start, becoming more curvilinear as cells start coherent movements several hours into development. This dynamic aspect of the curvature is an important characteristic of early embryogenesis: characterizing it is crucial for quantitative analysis and dynamic modeling of development. This presents a number of methodological problems for the elastic deformation of 3D and 4D data from confocal microscopy, to standardize images and follow temporal changes. The parameter searches for these deformations present hard optimization problems. Here we describe our evolutionary computation approaches to these problems. We outline some of the immediate applications of these techniques to crucial problems in Drosophila developmental biology., Conference paper, Published.
An explicit model of belief change for cryptographic protocol verification
Proceedings of the 8th International Symposium on Logical Formalizations of Commonsense Reasoning. Stanford, CA, 2007. Cryptographic protocols are structured sequences of messages that are used for exchanging information in a hostile environment. Many protocols have epistemic goals: a successful run of the protocol is intended to cause a participant to hold certain beliefs. As such, epistemic logics have been employed for the verification of cryptographic protocols. Although this approach to verification is explicitly concerned with changing beliefs, formal belief change operators have not been incorporated in previous work. In this preliminary paper, we introduce a new approach to protocol verification by combining a monotonic logic with a non-monotonic belief change operator. In this context, a protocol participant is able to retract beliefs in response to new information and a protocol participant is able to postulate the most plausible event explaining new information. Hence, protocol participants may draw conclusions from received messages in the same manner conclusions are drawn in formalizations of commonsense reasoning. We illustrate that this kind of reasoning is particularly important when protocol participants have incorrect beliefs., Conference paper, Published.
Exploiting known vulnerabilities of a smart thermostat
Proceedings of 2016 14th Annual Conference on Privacy, Security and Trust (PST) in Auckland, New Zealand, 12-14 Dec. 2016. We address security vulnerabilities for a smart thermostat. As this kind of smart appliance is adopted in homes around the world, every user will be opening up a new avenue for cyber attack. Since these devices have known vulnerabilities and they are being managed by non-technical users, we anticipate that smart thermostats are likely to be targetted by unsophisticated attackers relying on publicly available exploits to take advantage of weakly protected devices. As such, in this paper, we take the role of a `script kiddy' and we assess the security of a smart thermostat by using Internet resources for attacks at both the physical level and the network level. We demonstrate that such attacks are unlikely to be effective without some additional social engineering to obtain user credentials. Moreover, we suggest that the vulnerability to attack can be further minimized by simply reducing the use of remote storage where possible., Conference paper
Exploring power storage profiles for vehicle to grid systems
Proceedings of the AAAI Workshop on Artificial Intelligence for Cities, Austin, USA, 2015. The Smart Grid allows users to monitor power usage through the use of Smart Meter technology. In principle, this information can be used to modify usage habits in a way that reduces consumer costs as well as greenhouse emissions. However, in an urban environment, many users are restricted by the same constaints: they work during the day, and they are home at night. This creates spikes in power cost at peak usage times, and it may also lead to increased emissions in scenarios where sustainable resources are limited. An individual user can avoid these spikes by using an electric car as a storage device; it can be charged at the cheapest times, and then discharged to the home at the most expensive times. While this idea is intuitively appealing, it turns out that the benefits vary greatly depending on the storage algorithm used. In this paper, we describe the Power Storage Simulator, a tool for experimenting with storage algorithms to improve the efficiency of vehicle to grid systems. We suggest that this tool is also useful for educating power consumers about load balancing on the Smart Grid through an engaging, visual simulation., Conference paper, Published.
Fundamental methods of mathematical economics
4th edition., Book, Published.
Gene expression noise in embryonic spatial patterning
Proceedings of 2011 21st International Conference on Noise and Fluctuations in Toronto, ON, Canada on 12-16 June 2011. Fruit flies serve as a model for understanding the genetic regulation involved in specifying the complex body plans of higher animals. The head-to-tail (anterior-posterior) axis of the fly (Drosophila) is established in the first hours of development. Maternally supplied factors form concentration gradients which direct embryonic (zygotic) genes where to be activated to express proteins. These protein patterns specify the positions and cell types of the body's tissues. Recent research has shown, comparing between embryos, that the zygotic gene products are much more precisely positioned than the maternal gradients, indicating an embryonic error reduction mechanism. Within embryos, there is the additional aspect that DNA and mRNA operate at very low copy number, and the associated high relative noise has the potential to strongly affect protein expression patterns. In recent work, we have focused on the noise aspects of positional specification within individual embryos. We simulate activation of hunchback (hb), a primary target of the maternal Bicoid (Bcd) protein gradient, which forms an expression pattern dividing the embryo into anterior and posterior halves. We use a master equation approach to simulate the stochastic dynamics of hb regulation, using the known details of the hb promoter, the region of DNA responsible for transcribing hb mRNA. This includes the binding/unbinding of Bcd molecules at the promoter, hb transcription, subsequent translation to Hb protein, binding/unbinding of Hb at the promoter (self-regulation), and diffusion of the Bcd and Hb proteins. Model parameters were set by deterministically matching large scale pattern features for a series of experimental expression patterns: wild-type (WT) embryos; hb mutants lacking self-regulation; and constructs in which portions of the hb promoter were used to express a reporter gene (lacZ). The model was then solved stochastically to predict the noise output in these different experiments. In subsequent noise measurements we experimentally corroborated a number of the predictions. These include that mRNA is noisier than protein, and that Hb self-regulation reduces noise. Results indicate that WT (self-regulatory) Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, and is uncorrelated with Bcd fluctuations. This contradicts prior work, which had assumed a complete dependence of Hb fluctuations on Bcd fluctuations. In the constructs and mutant, which lack self-regulation, we find that increasing the number and strength of Bcd binding sites (there are 6 in the core hb promoter) provides a rudimentary level of noise reduction. The model is robust to the various Bcd binding site numbers seen across different fly species. New directions in the project include incorporating a known inhibitor of hb, Krüppel, into the model to study its effect on the noise dynamics. Our study has identified particular ways in which hb output noise is controlled. Since these involve common modes of gene regulation (e.g. multiple regulatory sites, self-regulation), these results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development., Conference paper, Published.
A geometric modelling framework for conceptual structural design from early digital architectural models
Computer support for conceptual structural design is still ineffective. This is due, in part, to the fact that current computer applications do not recognize that structural design and architectural design are highly interdependent processes, particularly at the early stages. The goal of this research is to assist structural engineers at the conceptual stage with early digital architectural models. This paper presents a geometric modeling framework for facilitating the engineers’ interactions with architectural models in order to detect potential structural problems, uncover opportunities, respect constraints, and ultimately synthesize structural solutions interactively with architectural models. It consists of a process model, a representation model and synthesis algorithms to assist the engineer on demand at different stages of the design process. The process model follows a top-down approach for design refinements. The representation model describes the structural system as a hierarchy of entities with architectural counterparts. The algorithms rely on geometric and topologic relationships between entities in the architectural model and a partial structural model to help advance the synthesis process. A prototype system called StAr (Structure–Architecture) implements this framework. A case study illustrates how the framework can be used to support the conceptual structural design process., Peer reviewed, Peer reviewed article, Received 24 October 2005 ; Revised 5 February 2007 ; Accepted 8 March 2007 ; Available online 3 December 2007., Geometric modeling, Conceptual structural design, Integrated design, Architectural design
Getting serious about sustainability
One-planet living represents the per capita share of global ecosystem services that each person on Earth could use were humanity to live equitably within ecological carrying capacity. My research uses ecological footprint analysis to explore the potential for the City of Vancouver to achieve one-planet living. Specifically, I examine what reductions in per capita ecological footprint would be necessary, what policies or changes to management practices are available to the City to facilitate those reductions, and what one-planet living might “look like” if those policies and changes to urban management practices were implemented. I use 2006 data to conduct an integrated urban metabolism and ecological footprint assessment for the City in order to establish a baseline from which to estimate the necessary reductions in material and energy consumption. I develop lifestyle archetypes of societies living at a one-planet ecological footprint (both real and hypothetical) to inform estimates on how changes in diet, buildings, consumables and waste, transportation and water could achieve one-planet living in Vancouver. I also draw on examples from the international sustainable cities literature and interviews with City of Vancouver and Metro Vancouver staff and elected representatives to develop policy proposals for reducing Vancouver’s ecological footprint. Getting to one-planet living in Vancouver requires at least a 58% reduction in the per capita ecological footprint with the greatest contributions coming from reducing food waste, red meat consumption, and virtually eliminating personal motor vehicle use (shifting instead to an 86% walk, cycle and transit mode share which the City already achieves in its Downtown). The City has and can continue to influence individual and corporate choices through zoning and permitting. However, citizens would have to accept lifestyle changes pertaining to food and personal consumption to achieve the one-planet living goal. Involvement by senior governments in reducing the ecological footprint is also required. It remains to be seen whether Vancouverites, or any population accustomed to modern consumer lifestyles, will voluntarily accept and implement the changes necessary to achieve equitable sustainability as articulated by one-planet living., Thesis, Published.
Hedging the risk of increased emissions in long term energy planning
The feasibility of meeting emission targets is often evaluated using long range planning optimization models in which the targets are incorporated into the system constraints. These models typically provide one ‘optimal’ solution that considers only a deterministic representative value of emissions for each technology and do not consider the risk of exceeding expected emissions for a given optimal solution. Since actual emissions for any given technology are uncertain, implementation of such an optimal solution carries inherent risk that emissions will exceed the given target. In this paper, we implement a stochastic risk structure into the OSeMOSYS optimization model to incorporate uncertainty related to the emissions of electricity generation technologies. For a given risk premium, defined as the additional amount that society is willing to pay to reduce the risk of exceeding the cost optimal system emissions, we determine the generation technology mix that has the lowest risk of exceeding this baseline. We focus on emissions risk since the literature on emissions risk is sparse while the literature on other risks such as policy risks, financial risks and technological risks is extensive. We apply the model to a case study of a primarily fossil based jurisdiction and find that, when risk is incorporated, solar and wind technologies are built out seven and five years earlier respectively and that carbon free technologies such as coal with carbon capture and storage (CCS) become effective alternatives in the energy mix when compared to the ‘optimal’ solution without consideration of risk, though this does not include the risk of carbon leakage from CCS technologies. If nuclear is included as a generation option, we find that nuclear provides an effective risk hedge against exceeding emissions., Peer-Reviewed Article, Final article published. Available online 12 February 2017., Peer reviewed

Pages