BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

Trust as a precursor to belief revision
Belief revision is concerned with incorporating new information into a pre-existing set of beliefs. When the new information comes from another agent, we must first determine if that agent should be trusted. In this paper, we define trust as a pre-processing step before revision. We emphasize that trust in an agent is often restricted to a particular domain of expertise. We demonstrate that this form of trust can be captured by associating a state partition with each agent, then relativizing all reports to this partition before revising. We position the resulting family of trust-sensitive revision operators within the class of selective revision operators of Ferme and Hansson, and we prove a representation result that characterizes the class of trust-sensitive revision operators in terms of a set of postulates. We also show that trust-sensitive revision is manipulable, in the sense that agents can sometimes have incentive to pass on misleading information., Article, Published.
Using thermal comfort models in health care settings
A fundamental challenge in assessing thermal comfort in health care settings is providing comfortable conditions for the diverse medical services and concurrent occupancy groups. Thermal comfort standards rely on thermal comfort models to predict thermal conditions in spaces that are satisfactory for human occupancy. However, thermal comfort standards and models have not been developed from experimental or field data in health care settings or with health-care-specific concerns in mind; therefore, their validity to assist in environmental health care design has been questioned. This study is motivated by the practical concerns with using thermal comfort models to assist in the design of HVAC systems for health care facilities. The ASHRAE thermal comfort standard (ASHRAE 2017a) requires a set of environmental and personal factors that depend onthe occupants’ activity levels and clothing insulation. Outlined in this study are the challenges in providing thermal comfort in rooms with patients and medical staff with varying activity levels and clothing insulation. Other challenges explored include looking at activity levels that are near or above the research that was used to develop the comfort models and the lack of insulation values for the clothing required to be worn by some medical personnel. This study also reviews the complexity and diversity of patients, their levels of health, and the care they are receiving relative to the assessment of thermal comfort. A final complexity discussed is applying the steady-state thermal comfort models to the transient nature of occupants in health care facilities. A literature review of thermal comfort research in health care settings is discussed and summarized. The focus has been on hospitals in general, with some studies on operating and patient rooms. A general conclusion points to patients being more tolerant of indoor conditions than predicted by the thermal comfort models and, generally, patients are more accepting of higher temperatures than the staff. The studies reviewed demonstrate that thermal comfort models can be applied with caution to rooms that serve medical staff and healthy patients—patients that are healthy in terms of thermal sensation and regulation. This paper exposes increased complexities in addressing thermal comfort in health care settings and concludes that given the critical nature of health care facilities, as well as the levels of occupant diversity and specialization, increased detail and attention to individualities are needed. The paper also reveals a lack of personal and environmental data to enable reliable thermal comfort assessments., Peer reviewed, Conference proceeding, Published., ASHRAE thermal comfort standard, Thermal comfort, HVAC systems
Utility-scale renewable energy systems
Renewable technologies such as solar or wind generation are favoured by many people concerned about the environmental and safety consequences of continued reliance on fossil-fuelled and nuclear generation. This paper focuses on two features of a societal move to renewable energy generation: their land area requirements, and the energy storage required to deliver energy services when wind and solar fluxes are inadequate. We use the IESVic Energy System Model to estimate the minimum land area and energy storage requirements for wind and solar photovoltaic generation to meet the entire 2000 US electrical demand. We model 13 locations for solar generation and 11 for wind, both singly and in various combinations, over several years of hourly climate data, and find that solar and wind generation facilities would require minimum land areas of 41,000 km2 and 193,000 km2 respectively. The smallest photovoltaic system requires storage equivalent to 76 days of average demand, while 108 days are required for wind. The generating area required by the smallest wind system is comparable to the total urbanized area of the contiguous United States, without considering land requirements for resource extraction, transmission, waste disposal, and energy storage., Article

Pages