BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol
Background: Bamboo is a highly abundant source of biomass which is underutilized despite having a chemical composition and fiber structure similar as wood. The main challenge for the industrial processing of bamboo is the high level of silica, which forms water-insoluble precipitates negetively affecting the process systems. A cost-competitive and eco-friendly scheme for the production of high-purity dissolving grade pulp from bamboo not only requires a process for silica removal, but also needs to fully utilize all of the materials dissolved in the process which includes lignin, and cellulosic and hemicellulosic sugars as well as the silica. Many investigations have been carried out to resolve the silica issue, but none of them has led to a commercial process. In this work, alkaline pretreatment of bamboo was conducted to extract silica prior to pulping process. The silica-free substrate was used to produce high-grade dissolving pulp. The dissolved silica, lignin, hemicellulosic sugars, and degraded cellulose in the spent liquors obtained from alkaline pretreatment and pulping process were recovered for providing high-value bio-based chemicals and fuel. Results: An integrated process which combines dissolving pulp production with the recovery of excellent sustainable biofuel and biochemical feedstocks is presented in this work. Pretreatment at 95 °C with 12% NaOH charge for 150 min extracted all the silica and about 30% of the hemicellulose from bamboo. After kraft pulping, xylanase treatment and cold caustic extraction, pulp with hemicellulose content of about 3.5% was obtained. This pulp, after bleaching, provided a cellulose acetate grade dissolving pulp with α-cellulose content higher than 97% and hemicellulose content less than 2%. The amount of silica and lignin that could be recovered from the process corresponded to 95 and 77.86% of the two components in the original chips, respectively. Enzymatic hydrolysis and fermentation of the concentrated and detoxified sugar mixture liquor showed that an ethanol recovery of 0.46 g/g sugar was achieved with 93.2% of hydrolyzed sugars being consumed. A mass balance of the overall process showed that 76.59 g of solids was recovered from 100 g (o.d.) of green bamboo. Conclusions: The present work proposes an integrated biorefinery process that contains alkaline pre-extraction, kraft pulping, enzyme treatment and cold caustic extraction for the production of high-grade dissolving pulp and recovery of silica, lignin, and hemicellulose from bamboo. This process could alleviate the silica-associated challenges and provide feedstocks for bio-based products, thereby allowing the improvement and expansion of bamboo utilization in industrial processes., Peer-reviewed article, Published. Received: 22 November 2016 ; Accepted: 2 February 2017 ; Published: 10 February 2017.
An eco-friendly scheme to eliminate silica problems during bamboo biomass fractionation
In this study, an eco-friendly scheme to resolve the silica associated challenges encountered in processing bamboo for biorefineries was evaluated. Bamboo chips were pretreated with sodium hydroxide (NaOH) at low temperature to completely extract silica and partially extract hemicelluloses for follow up conventional kraft pulping or bioethanol production. Silica and hemicellulose in the alkaline pre-extraction liquor (APEL) were sequentially isolated through carbon dioxide (CO2) and ethanol precipitation. High purity (> 99.8%) amorphous silica particles were recovered by carbonating the effluent at 60oC to a pH of 8.2 with CO2. The CO2 adsorption capacity of the APEL was determined to be 7.15g CO2 per liter. After recovering more than 96% of available silica in the APEL, hemicellulose in the CO2-treated liquor was subsequently separated. This study demonstrated the feasibility of pre-extraction and recovery of silica and hemicellulose to alleviate the silica challenges, thereby allowing to expand bamboo as a feedstock for industrial processes., Peer-reviewed article, Published. Manuscript received October 11, 2016; Accepted December 12, 2016.
Effect of alkaline pre-extraction of hemicelluloses and silica on kraft pulping of bamboo (Neosinocalamus affinis Keng)
Commercial bamboo chips were pre-treated with sodium hydroxide (NaOH) solutions to completely extract silica and partially extract hemicelluloses prior to kraft pulping. Reaction temperatures of 80–100 °C, times of 1–5 h, and NaOH charges of 6–18% were explored. With increasing pre-extraction severity, all silica and up to 50% of hemicelluloses in raw chips could be extracted without degrading cellulose and lignin. The chips from select extractions were cooked using the kraft process with varying effective alkali (EA) charges. Pre-extraction resulted in significant improvement in the delignification of chips during subsequent kraft pulping, offering an option to reduce the EA charge or the H-factor. The pulp yield was similar to the control while the drainage resistance of pulp from pre-extracted chips was slightly improved. Physical strength properties of pulps made from pre-extracted chips showed lower tensile index and higher tear index as compared with the control runs. Moreover, silica was no more a problem for chemical recovery and production of high-grade pulp. Extracted silica and hemicelluloses in the alkaline extraction liquor (AEL) can be used as a potential raw material for value-added products., Peer-reviewed article, Published. Received 19 February 2016; Revised 13 June 2016; Accepted 19 June 2016; Available online 15 July 2016.
Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp
To improve the efficiency of enzymatic hemicellulose removal from bamboo pre-hydrolysis kraft pulp, mechanical refining was conducted prior to enzyme treatment. Refining significantly improved the subsequent hemicellulose removal efficiency by xylanase treatment. Results showed that when PFI refining was followed by 3 h xylanase treatment, the xylan content of the bamboo pre-hydrolysis kraft pulp (after first stage oxygen delignification) could be decreased to 2.72% (w/w). After bleaching of enzyme treated pulp, the alpha-cellulose content was 93.4% (w/w) while the xylan content was only 2.38%. The effect of refining on fibre properties was investigated in terms of freeness, water retention value, fibre length and fibrillation characteristics. The brightness, reactivity and viscosity were also determined to characterize the quality of final pulp. Results demonstrated the feasibility of combining refining and xylanase treatment to produce high quality bamboo dissolving pulp., Peer-reviewed article, Published. Received 1 September 2016; Revised 9 October 2016; Accepted 12 October 2016; Available online 24 October 2016.