BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

Gene expression noise in embryonic spatial patterning
Proceedings of 2011 21st International Conference on Noise and Fluctuations in Toronto, ON, Canada on 12-16 June 2011. Fruit flies serve as a model for understanding the genetic regulation involved in specifying the complex body plans of higher animals. The head-to-tail (anterior-posterior) axis of the fly (Drosophila) is established in the first hours of development. Maternally supplied factors form concentration gradients which direct embryonic (zygotic) genes where to be activated to express proteins. These protein patterns specify the positions and cell types of the body's tissues. Recent research has shown, comparing between embryos, that the zygotic gene products are much more precisely positioned than the maternal gradients, indicating an embryonic error reduction mechanism. Within embryos, there is the additional aspect that DNA and mRNA operate at very low copy number, and the associated high relative noise has the potential to strongly affect protein expression patterns. In recent work, we have focused on the noise aspects of positional specification within individual embryos. We simulate activation of hunchback (hb), a primary target of the maternal Bicoid (Bcd) protein gradient, which forms an expression pattern dividing the embryo into anterior and posterior halves. We use a master equation approach to simulate the stochastic dynamics of hb regulation, using the known details of the hb promoter, the region of DNA responsible for transcribing hb mRNA. This includes the binding/unbinding of Bcd molecules at the promoter, hb transcription, subsequent translation to Hb protein, binding/unbinding of Hb at the promoter (self-regulation), and diffusion of the Bcd and Hb proteins. Model parameters were set by deterministically matching large scale pattern features for a series of experimental expression patterns: wild-type (WT) embryos; hb mutants lacking self-regulation; and constructs in which portions of the hb promoter were used to express a reporter gene (lacZ). The model was then solved stochastically to predict the noise output in these different experiments. In subsequent noise measurements we experimentally corroborated a number of the predictions. These include that mRNA is noisier than protein, and that Hb self-regulation reduces noise. Results indicate that WT (self-regulatory) Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, and is uncorrelated with Bcd fluctuations. This contradicts prior work, which had assumed a complete dependence of Hb fluctuations on Bcd fluctuations. In the constructs and mutant, which lack self-regulation, we find that increasing the number and strength of Bcd binding sites (there are 6 in the core hb promoter) provides a rudimentary level of noise reduction. The model is robust to the various Bcd binding site numbers seen across different fly species. New directions in the project include incorporating a known inhibitor of hb, Krüppel, into the model to study its effect on the noise dynamics. Our study has identified particular ways in which hb output noise is controlled. Since these involve common modes of gene regulation (e.g. multiple regulatory sites, self-regulation), these results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development., Conference paper, Published.
Hygrothermal performance assessment of vented and ventilated wall systems
Proceedings of Thermal Performance of the Exterior Envelopes of Whole Buildings XII International Conference, At Clearwater Beach, Florida, USA, December 2013. Based on analysis of the drying and wetting potentials of a particular local climate, designers choose wall systems with or without an air gap between a sheathing membrane and a cladding layer. In addition to the capillary break that the air gap provides, thereby reducing the moisture transfer from wet cladding to the interior of the wall, the airspace will add the thermal resistance of the wall system and reduce the heat flow across the wall system. These moisture and thermal performances are straightforward to understand if the air in the air cavity is assumed to be a “still air.” In this paper, an experimental study is undertaken to under-stand the impact of airflow through an air cavity on the moisture and thermal performance of wall systems. To achieve this objective three test panels are instrumented and monitored in the field-experimental setting: one with no air gap, another one with an air gap but restricted airflow, and the third one with an air gap and open for airflow. The second and third wall systems have the same air gap width but different top flashing designs creating vented and ventilated wall systems. For the wall systems’ orientation and boundary conditions considered in this study, the wall with no air gap accumulates relatively high moisture content on the sheathing board, stud, and bottom plate and also has high moisture content changes in a year cycle when compared to the vented and ventilated wall systems. In general, the hygrothermal performances of vented and ventilated wall systems are comparable. During the winter period when relatively high moisture accumulation occurs, the upper section of the ventilated wall system shows slightly lower moisture content compared to that of the vented wall system. The temperature readings of the sheathing boards in the vented and ventilated wall systems are slightly warmer than that of the wall with no air gap for 85.5% and 73% of the time (based on hourly data of a year), respectively. For the balance of a period of time, the sheathing boards in the walls with an air cavity are slightly cooler than that of the wall with an air gap. Although the low temperature on the sheathing board, which is caused by solar radiation-induced airflow, is beneficial during a cooling season, the air gap and the associated airflow may reduce the heat gain that may be obtained from solar radiation during the heating season. The implications of air cavity and flashing design (airflow rate) on the heating and cooling load calculations of different orientations, wall configurations, and climate require further investigation., Conference paper, Published.
Hygrothermal performance of exterior wall systems using an innovative vapour retarder in Canadian climate
Proceeding of the 4th International Building Physics Conference: 15 June 2009, Istanbul, Turkey. This paper provides highlights of the research work carried out at the National Research Council Canada, Institute for Research in Construction on assessing the hygrothermal performance of wall systems that included this innovative vapour retarder (Note: Vapour Barrier in Canadian terminology is equivalent to Vapor retarder in US terminology). The performance of walls was assessed when subjected to eastern coastal climate conditions of Halifax, one of the four Canadian climatic locations used in this study. A wood-framed stucco clad wall was the reference assembly. Results from different cases based on the variation of vapour control strategies and their effect on the hygrothermal performance of the wall systems are analysed. The results for the Halifax climate location indicate that the installation of a humidity controlled, innovative vapour retarder is a recommendable solution for the envelope design of residential buildings of these locations with moderate or high water vapour permeance of the interior paint. In this study, the advanced hygrothermal tool, hygIRC, was used to perform the hygrothermal performance analysis of the wall systems., Peer reviewed article, Published. A version of this document is published in: 4th International Building Physics Conference, Istanbul, Turkey, June 15-18, 2009, pp. 1-8.
Hygrothermal performance of RH-dependent vapour retarder in Canadian coastal climate
Proceedings of 12th Canadian Conference of Building Science and Technology: 06 May 2009, Montreal, QC. The hygrothermal performance of wood-frame wall with stucco cladding exposed to the coastal climate of Vancouver, BC, is studied. The primary objective of the study is to compare the moisture management performance of two vapour barriers: the relatively new SmartVapour Retarder (SVR) and commonly used Polyethylene sheet. For a reference purpose a wood-frame wall with no vapour barrier is considered as well. The performances of these three walls, which are exposed to the same indoor and outdoor climatic loads, are compared with respect to their dynamic responses to two simulation variables: interior moisture load (simulated water intrusion in the stud cavity) and paint on the interior gypsum board. The water intrusion is assumed to be through defect areas and the quantity is correlated with the amount of wind-driven rain that the wall is exposed to. The hygrothermal simulation results suggest that adoption of SVR as a vapour barrier yields better moisture management of the sheathing board (OSB) for any conditions considered in this paper including internal moisture load and interior paint. But, in coastal climate, it may have adverse effect on the moisture management of the interior gypsum board, in cases where water leaks into the cavity and the interior gypsum board is painted with low-vapour permeance paint., Peer reviewed article, Published. A version of this document is published in: 12th Canadian Conference of Building Science and Technology, Montreal, QC, May 6-8, 2009, pp. 1-12
Hygrothermal performance of ventilated attic in marine climate under different ceiling air tightness
14th International Conference on Indoor Air Quality and Climate (Indoor Air 2016), July 3-8, 2016, Ghent, Belgium. An indoor to attic air leakage and vice-versa significantly affect indoor air, thermal comfort and the hygrothermal performance in both living space and unconditioned space. In cold and marine climates an air leakage from living space to an attic brings a relatively high relative humidity to the attic space. This effect is primarily responsible for condensation in attic structural parts such as roof sheathings. In this paper, the hygrothermal performance of a ventilated attic in wet costal climates under different ceiling air leakage is studied. A benchmarked whole building Heat-Air-Moisture model named HAMFit is used to study hygrothermal performance of ventilated attics in marine climates. The attic is modelled as 2-dimensional geometry with coupled heat transfer, moisture transport and a turbulence Computational Fluid Dynamics through attic space and porous structural parts of the attic. A vent ratio of 1/300 and three types normalized leakage area (tight, normal and leaky) are used to analyse how the moisture transport behaves in ventilated space. A winter weather data of city of Vancouver, BC is used to represent a wet marine climate. Our findings show specific locations in the attic structure are more exposed to moisture related problems and the air circulation and temperature distribution due to ventilation under multiple ceiling air leakage scenarios are presented. Hygrothermal performance of ventilated attic in marine climate under different ceiling air tightness., Conference paper, Published.
Hygrothermal properties of exterior claddings, sheathing boards, membranes and insulation materials for building envelope design
Proceedings of Thermal Performance of the Exterior Envelopes of Whole Buildings X International Conference: 02 December 2007, Clearwater, Florida. Testing was conducted to determine those construction material properties that affect the movement of heat, air, and moisture in building envelopes. The paper reports the density, thermal conductivity, equilibrium moisture content, water vapor permeability, water absorption coefficient, liquid diffusivity, and air permeability of twenty-three building materials commonly used in North American including: exterior claddings, exterior sheathing boards, membranes and insulations. The paper also discusses the experimental and analytical procedures used to determine these properties., Conference paper, Published. A version of this document is published in: Proceedings of Thermal Performance of the Exterior Envelopes of Whole Buildings X, Clearwater, Florida, Dec. 2-7, 2007, pp. 1-16.
Improving students' engagement with large-team software development projects
Proceedings from the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education. Computer science and technology education should provide not only a strong theoretical foundation, but also problem solving, and communication and teamwork skills to prepare the students for careers. Including projects in curricula is a norm in many disciplines. However, projects are generally individual or based on small teams (two to five members). This paper presents my approach to teaching a capstone undergraduate computer technology course at the British Columbia Institute of Technology (BCIT) in the Computer System Technology (CST) Program in which a large class of students (maximum 22), organized into small teams work together and apply Agile software development practices to design, implement, integrate and test a large project. This model provides students with unique learning opportunities and experiences, as well as improving their soft skills, engagement and motivation., Peer reviewed, Conference paper, Published.
Indoor humidity levels of houses in Pacific coastal climate
9th International Conference on Indoor Air Quality, Ventilation & Energy Conservation (IAQVEC), October 23-26, 2016, Songdo, South Korea. This project studied the relative humidity and indoor temperature variations in three houses in the pacific coastal climates. The houses have been monitored for one month in each four different seasons under different size of occupants, temperature variation and living conditions. These three houses represent different air tightness, number of occupants and floor size. The temperature and RH data loggers are used in every room in each house to better understand which rooms in a certain living conditions are more susceptible to moisture related problems. In addition, three existing models (European Indoor Class Model, ASHRAE 160P simple and intermediate models) are used to generate the indoor humidity level and the calculated values are compared to the measured field data., Conference paper, Published.
Initial evaluation of the FreeWheel™ wheelchair attachment
Proceedings of Rehabilitation Engineering and Assistive Technology Society of North America Annual Conference 2011. The FreeWheel™ wheelchair attachment was developed to overcome the burden that front casters pose to manual wheelchairs., Conference paper, Published.
Intelligent Micro Grid research at BCIT
Proceedings of IEEE EPEC’08 Conference, Vancouver, Oct 2008. This paper describes a major research initiative by British Columbia Institute of Technology for the construction of an Intelligent Micro Grid on its campus in Burnaby, BC, Canada., Conference paper, Published.
Iterated belief change
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-05) in Edinburgh, Scotland, 2005. We use a transition system approach to reason about the evolution of an agent’s beliefs as actions are executed. Some actions cause an agent to perform belief revision and some actions cause an agent to perform belief update, but the interaction between revision and update can be nonelementary. We present a set of basic postulates describing the interaction of revision and update, and we introduce a new belief evolution operator that gives a plausible interpretation to alternating sequences of revisions and updates., Conference paper, Published.
Life-cycle performance framework for building sustainability
Proceedings from the International High Performance Buildings Conference 2010. In spite of the progress in the development of methods and tools to support sustainable building design, there is still a lack of a formal method to bridge the “no man’s land” gap between the traditional building engineering disciplines, and between these and the architecture, to achieve the level of building integration required for sustainability. The framework described in this paper is an attempt to develop such a method. The framework, grounded on building science, facilitates a comprehensive assessment of the life-cycle performance of buildings and building systems, by enabling multiple function-performance factors of a building to be addressed iteratively. Quantitative methods and test protocols can be incorporated into the framework for assessing the long-term viability of proposed solutions. The organization of the underlying principles of building life-cycle performance described in this paper will hopefully conduct to a more integrated treatment of buildings in research, education, and practice., Peer reviewed, Conference proceeding, Published.

Pages