Model-based coupling of air and hydronic system operation in a high performance academic building
Mottaghi, Seyed Arman (author) Mora, Rodrigo (thesis advisor) British Columbia Institute of Technology School of Construction and the Environment (Degree grantor) British Columbia Institute of Technology School of Construction and the Environment (Degree granting institution)
Dissertation/thesis
© Seyed Arman Mottaghi, 2017. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author.http://creativecommons.org/licenses/by-nc-nd/2.5/ca/http://rightsstatements.org/vocab/InC/1.0/
British Columbia Institute of Technology
2017-12-14
213 pages
This research is motivated from preliminary teamwork on analyzing the “Performance Gap” of three high-performance buildings, which are currently under operation. All three buildings are facing operational challenges that are not unusual considering the complexity of their systems. However, evidence from design documents, an existing energy model, and operational data suggests that their performance is not entirely reflecting the design intent. This research follows the premise that there is a need to design buildings as systems-of-systems to be able to understand, interpret, quantify, design, and fine-tune the dynamic couplings between systems. This research was dedicated to a high-performance academic building (HPAB) – one of the above three buildings – as a case-study to gain understanding on the complexities of systems coupling, and learn and apply dynamic simulation-based systems coupling tools and methods. The main focus of the study is the classrooms because of the existing evidence on the significant impact of indoor environmental comfort on student performance in academic facilities. The HPAB case-study building incorporates, at the source side, ground-coupled water-to-water heat pumps (WWHP) and solar-thermal as primary means of heating, with boiler used as a backup source. Cooling is provided by the cold side of the WWHP system. On the demand side, heating and cooling are delivered via thermally active radiant floors; while air handling systems take care of the ventilation and de/humidification needs, and provide supplementary heating and cooling. The building was initially designed to rely on natural ventilation for summer cooling; however, designers realized that natural ventilation alone was not able to meet the building cooling demands in the summer. Nevertheless, the building has operable windows and a central atrium that seems to be collecting the air from the individual spaces and exhausting it after some heat recovery. The thermally active building is not adequately meeting the demands from some critical zones. Furthermore, the operation is not consistent with the reduced hours of summer operation of an academic building. These and other observations on the building indicate that the air and radiant systems are not operating in synergy. Existing industry practices in building controls systems, and the research literature show limited evidence of efforts to attempt to harmonize these two complementary systems. Simulation was used to re-create the HPAB building’s mechanical system response in two levels: a classroom-level model, and a Whole Building Energy Model (WBEM). The implementation was in EnergyPlus modeling software. Design documents, and historic operational data from the building automation system (BAS) were used for calibration. In this work, various features of Energy Management System (EMS) module of EnergyPlus has been utilized to create a responsive mechanical system control within the simulation. In the end, the typical responses of the building spaces could be accurately recreated in the simulation for both models. In the next step, testing different controls approaches – labelled as Strategies – and comparing them with defined comfort and stability metrics showed that harmonizing the air and radiant systems, in addition to increasing the consistency of the radiant system operation, results in improvement to the system operation without sacrificing the comfort. This research explores the challenges of employing a WBEM to assist building design decisions by accounting for the building dynamics and enabling the coupling and tuning of systems parameters and control strategies through simulation. The research demonstrates the benefits of improved operational control sequences that are more in tune with the building’s design intent.
Building Sustainable buildings Hydronics Ventilation
eng
electronic
Master of Applied Science in Building Engineering/Building Science
Graduate
Building Engineering/Building Science
Master of Applied Science