Master of Science in Ecological Restoration Applied Research Projects | The BCIT cIRcuit

Master of Science in Ecological Restoration Applied Research Projects

This is Canada’s first master’s program specializing in Ecological Restoration and is offered as a joint program between British Columbia Institute of Technology (BCIT) and Simon Fraser University (SFU). The MSc in Ecological Restoration combines the strong technical and applied (experiential) knowledge at BCIT with SFU’s fundamental (contextual) basic science and community engagement expertise.


Pages

Comparing soil nematode composition in bluebunch wheatgrass P. spicata root to the occurrence of invasive plants C. stoebe and L. dalmatica
Comparing soil nematode composition in bluebunch wheatgrass P. spicata root to the occurrence of invasive plants C. stoebe and L. dalmatica
The viability of native bunchgrass ecosystems throughout the PPxh BEC subzone and in Kenna Cartwright Park (KCP) in Kamloops B.C. are under threat by invasive plants. Once established, invasive plants are difficult to eradicate and can predominate the landscape. I collected soil samples from a relatively undisturbed bunchgrass reference site composed of native bluebunch wheatgrass (Pseudoroegneria spicata), and I collected soil samples from a bunchgrass site occupied by the invasive plants, spotted knapweed (Centaurea stoebe) and dalmatian toadflax (Linaria dalmatica), to compare the soil nematode communities. My results reveal differences in the community-level biodiversity and abundance of soil nematodes between sites. The Maturity Index and the Plant Parasitic Index indicate that the native bunchgrass site had a “Structured” soil food web and that the site occupied by invasive plants had a “Basal” soil food web. My results indicate soil nematodes are useful as bioindicators of soil properties and these data provide useful criteria to help prioritize sites for ecological restoration., Nematology, Invasive plants, Pseudoroegneria spicata, Biological indicators, Ecological restoration
Determining the Accuracy of the Beaver Restoration Assessment Tool for Identifying North American Beaver (Castor canadensis) Habitat in the Central Interior Cariboo Region of British Columbia
Determining the Accuracy of the Beaver Restoration Assessment Tool for Identifying North American Beaver (Castor canadensis) Habitat in the Central Interior Cariboo Region of British Columbia
Perennial watercourses in British Columbia are becoming intermittent from climate change. North American beaver (Castor canadensis) dams retain perennial flow while providing other ecosystem services. The Beaver Restoration Assessment Tool (BRAT) estimates a stream’s dam capacity by evaluating the vegetative, physical, and hydrological habitat. This research project surveyed 15 streams in the Cariboo region to assess the accuracy of the BRAT’s outputs. Climate data were used to model changes in flow. Overall, the BRAT outputs generally correlated with field measurements. However, the non-vegetation outputs contributed minimally to dam capacity, and higher dam capacity did not always indicate higher habitat quality. Climate projections also indicate most streams will lose nival flow by 2041-2071. Therefore, using the BRAT with other models can determine both dam capacity and overall habitat quality to increase successful beaver restoration chances. When vegetation and physical stream conditions are met, higher watershed/channel size may indicate higher-quality habitat.
Determining the accuracy of the beaver restoration assessment tool for identifying North American beaver (Castor canadensis) habitat in the Central Interior Cariboo region of British Columbia
Determining the accuracy of the beaver restoration assessment tool for identifying North American beaver (Castor canadensis) habitat in the Central Interior Cariboo region of British Columbia
Perennial watercourses in British Columbia are becoming intermittent from climate change. North American beaver (Castor canadensis) dams retain perennial flow while providing other ecosystem services. The Beaver Restoration Assessment Tool (BRAT) estimates a stream’s dam capacity by evaluating the vegetative, physical, and hydrological habitat. This research project surveyed 15 streams in the Cariboo region to assess the accuracy of the BRAT’s outputs. Climate data were used to model changes in flow. Overall, the BRAT outputs generally correlated with field measurements. However, the non-vegetation outputs contributed minimally to dam capacity, and higher dam capacity did not always indicate higher habitat quality. Climate projections also indicate most streams will lose nival flow by 2041-2071. Therefore, using the BRAT with other models can determine both dam capacity and overall habitat quality to increase successful beaver restoration chances. When vegetation and physical stream conditions are met, higher watershed/channel size may indicate higher-quality habitat.
Drivers of humpback whale movement in Boundary Pass, British Columbia
Drivers of humpback whale movement in Boundary Pass, British Columbia
The Salish Sea is critical habitat for several whale species including the humpback whale (Megaptera novaeangliae). Boundary Pass is part of the Salish Sea and connects the Pacific Ocean to several commercial shipping ports in the Pacific Northwest Region of North America. Since 1997, the number of Humpback whales continues to increase in this area, meanwhile the number of vessels is also increasing such that Boundary Pass is among the busiest shipping routes in the region. This high vessel traffic in the area leads to acoustic disturbances that degrades whale foraging opportunities for humpback whales. Commercial vessels transporting goods through whale habitat causes an increased risk of vessel collisions with humpback whales. Humpback-whale movements in Boundary Pass was recorded through systematic scan surveys conduction from a vantage point between June and August. Whale occupancy was compared to oceanographic variables and vessel presence. We found humpback whales were most likely to be present during ebb tides of speeds of -2 m/s under the influence of low tides and also whales were active in areas overlap with shipping lane in the area. Based on our founding in the area about humpback whale connection with biophysical properties of region I hypothesized that whale distribution in area and it relation to low tide and ebb current is most probably under the influence of food abundance in those periods of time. This study concludes with policy recommendations for improving humpback whale foraging grounds by reducing acoustic harassment and risk of ship strikes in the Boundary Pass., Humpback whale, movements, oceanographic variables, Boundary pass, Salish sea, Vessel strike, tide, currents, SST, salinity
Eco-cultural restoration of wetlands at Tl’chés (Chatham Islands), British Columbia, Canada
Eco-cultural restoration of wetlands at Tl’chés (Chatham Islands), British Columbia, Canada
My research project examined the restoration possibilities for two culturally important wetland ecosystems at Tl’chés (Chatham Islands, British Columbia, Canada). The first wetland is a sacred bathing pool and holds cultural significance, the second is a remnant silverweed and springbank clover (Potentilla anserine ssp. pacifica and Trifollium wormskjoldii) root garden. These wetlands are necessary ecosystems for the wildlife on Tl’chés as wetlands are rare, but also an integral part of Songhees’ cultural practices. My work was done at the invitation from elder Súlhlima (Joan Morris) who was one of the last resident of the islands and retains hereditary rights there, and Songhees Chief Ron Sam and band council. The goal of my project was to develop a restoration plan to restore the wetlands to pre-abandonment conditions, so cultural practices can continue, and to benefit the islands native plant and animal species. The project highlights the value of combining traditional ecological knowledge (TEK) and traditional resource and environmental management (TREM) practices with ecological restoration., Eco-cultural restoration, wetland ecosystems, traditional ecological knowledge (TEK), traditional resource and environmental management (TREM), estuarine root gardens, Songhees First Nation
Ecocultural restoration of a Coastal Root Garden on Tl’chés (Chatham Island), B.C.
Ecocultural restoration of a Coastal Root Garden on Tl’chés (Chatham Island), B.C.
Tl’chés is the Lekwungen name for the Chatham Islands — an archipelago located southeast of Victoria, British Columbia. Tl’chés is a central place in the traditional territory of the Lekwungen peoples, and today it is reserve land of the Songhees First Nation. This landscape was traditionally managed by prescribed burning and the cultivation of native plants. However, in the early 1950's, Lekwungen peoples left the archipelago, due to a lack of potable water and since then, the landscape has degraded drastically. The introduction of non-native plants has resulted in threats to the ecological, cultural resilience, and diversity of the landscape. My research focuses on developing a restoration plan for springbank clover in the coastal root garden. My restoration approach focuses on incorporating a Songhees-informed approach to restoration by integrating past practices and knowledge with the aim of answering: how to best restore the springbank clover population on Tl’chés?, Eco-cultural restoration, coastal root gardens, traditional ecological knowledge (TEK), Songhees First Nation, cultural keystone place (CPK)
Ecological restoration of the Little Qualicum River Estuary: Analysis of short-term sediment deposition
Ecological restoration of the Little Qualicum River Estuary: Analysis of short-term sediment deposition
Restoration of the Little Qualicum River Estuary has focused on re-establishing the Carex lyngbyei channel edge vegetation lost to grubbing by the overabundant resident Canada goose population. Short-term sediment deposition rates were measured using weekly deployments of sediment traps between June and July 2019 to investigate how restoration is facilitating sediment retention to rebuild the marsh platform. Deposition rates varied between 6.82-107.88 g/m2/week with traps deployed on the denuded mud flat areas collecting more sediments than inside the older exclosures. It had been expected that the exclosures with a greater density of sedges would retain more sediment. Spatial variation may be attributed to differences in sampling elevations. Restoring C. lyngbyei may not increase localized sediment deposition directly but does protect the continued supply of organic input from the seasonal senescence of C. lyngbyei. The organic input from aboveground biomass may have a larger contribution to marsh accretion than allochthonous sediments., sediment deposition, Carex lyngbyei, estuary, restoration, Canada goose
Ecological restoration options for Clear Lake and South Lake (Riding Mountain National Park), Manitoba
Ecological restoration options for Clear Lake and South Lake (Riding Mountain National Park), Manitoba
Options for ecological restoration are discussed for the Clear Lake – South Lake complex of Riding Mountain National Park, Manitoba. This project consisted of a) a review of studies conducted on Clear Lake and South Lake and b) a stream water quality sampling program. The review of previous studies was to gain an in-depth understanding of historical processes which shaped Clear Lake and South Lake. Previous condition, current condition and ecological stressors are all identified based on literature from Riding Mountain National Park. The stream water quality sampling program identifies major sources of nutrients into Clear Lake. Ecological restoration options pertain specifically to the Clear Lake – South Lake complex. South Lake restoration options include supplemental planting, dredging and chemical treatments. A novel technique designed to disrupt wind driven nutrient loading is also discussed. These methods are designed to return the South Basin to a macrophyte dominated system. Addressing hypolimnetic oxygen deficiency, two forms of hypolimnetic aeration are discussed to improve water quality in Clear Lake including a ‘Full lift’ design as well as a Speece Cone. Three options regarding the isthmus and connectivity between Clear Lake and South Lake are examined including a fishway installation and a wattle fence installation.
Effects of Canada Goose (Branta canadensis) and Snow Goose (Chen caerulescens) herbivory on tidal marsh recession at the Westham Island Marsh
Effects of Canada Goose (Branta canadensis) and Snow Goose (Chen caerulescens) herbivory on tidal marsh recession at the Westham Island Marsh
In the Fraser River Estuary of British Columbia, tidal marshes have been receding and converting into unvegetated mudflats since the 1980s. While there are many hypotheses for this recession, the effect of avian herbivory is poorly understood. This study assessed how Canada Goose (Branta canadensis) and Snow Goose (Chen caerulescens) herbivory affected cover of tidal marsh vegetation that was comprised mainly of three-square bulrush (Schoenoplectus pungens) in the Westham Island tidal marsh. I conducted two field-based exclosure experiments, marsh edge and mudflat, that used exclosure plots to reduce specific goose herbivory in a randomized block design. Each experiment consisted of four blocks each of which was comprised of four treatments: open to goose herbivory, excluded all goose herbivory, primarily excluded Canada Goose herbivory, or primarily excluded Snow Goose herbivory. The marsh edge experiment used exclosures centered on the vegetated edge of the marsh, while the mudflat experiment was conducted in the unvegetated mudflat and were transplanted with S. pungens. Based on results from July to October of 2020, percent cover of tidal marsh vegetation was about 20% lower in plots open to Canada Goose herbivory versus those that excluded geese. Snow Goose herbivory could not be accurately assessed as they arrived when S. pungens were dormant. Thus, deterring goose herbivory may be an important consideration for land managers in restoring tidal marshes. Additionally, I compared percent cover from drone-derived remote sensing to traditional ground-based visual estimates of percent cover of S. pungens in the tidal marsh. One per month, from July to October of 2020, I used a drone to take photos of the exclosures from the previous experiments, and used pixel counts to calculate the percent cover of S. pungens. I then used a t-test to compare the drone-derived percent cover to the ground-based estimates and found no significant difference (t = 0.58, p = 0.56). I then plotted a linear regression model and found a strong correspondence between both methods (R² = 0.99, p = 1.3e-139). So, remote sensing using drones appears to be an effective alternative to visual estimates of percent cover of tidal-marsh vegetation in the Westham island tidal marsh., Tidal marsh recession, Goose herbivory, Canada Goose, Snow Goose, Schoenoplectus pungens, Drones
Effects of logging-induced sediment loading on Chinook salmon rearing habitat in Tranquil Estuary, BC and implications for estuary restoration
Effects of logging-induced sediment loading on Chinook salmon rearing habitat in Tranquil Estuary, BC and implications for estuary restoration
Research on estuaries has increased in recent years, however, the effects of logging on estuaries and the effects of estuary habitat loss on Chinook salmon (Oncorhynchus tshawytscha) in the Pacific northwest is limited. To address habitat loss associated with logging, I used an extensive aerial photo record for Tranquil Creek estuary and an unlogged control to analyze changes in salt marsh area, elevation and volume, supplemented with a grain size distribution analysis. While I failed to find evidence of a difference between a logged and an unlogged estuary, some negative trends in salt marsh area and elevation observed over the observational period were indicative of changes that are unfavorable for juvenile Chinook salmon. Analytical methods presented here to assess changes in two remote coastal estuaries has contributed to the current knowledge on the effects of logging on estuarine ecosystems in coastal BC and provide tools for innovative estuary habitat restoration., aerial photograph analysis, Chinook salmon (Oncorhynchus tshawytscha), salt marsh, estuary restoration, logging, sediment
Environmental preferences of the Oregon Forestsnail
Environmental preferences of the Oregon Forestsnail
Snails play crucial roles in forest ecosystems, aiding in soil creation, seed dispersal, and fungal spore distribution. The Oregon Forestsnail, imperiled in Canada, exhibits habitat preferences, notably favoring Stinging Nettle-rich environments. This study investigated environmental factors influencing snail presence in Colony Farm Regional Park, British Columbia. This study preformed searches and studies of a number of plots to find the number of snails and the environmental factors in those plots. Results showed a strong correlation between snail abundance and Stinging Nettle coverage, suggesting its importance as habitat. Relative humidity significantly impacts snail activity, with higher humidity correlated with increased snail presence. Soil moisture may influence snail behavior, with the difference in soil moisture during a drought potentially showing impacts on the number of snails found. Thatch thickness, while showing a positive trend, lacked significance in determining snail presence. These findings seek to inform conservation efforts, highlighting the significance of preserving moist habitats with abundant Stinging Nettle for the survival and expansion of Oregon Forestsnail populations., Oregon Forestsnail, stinging nettle, humidity, thatch thickness
Evaluating stream degradation in Villa De Allende, Mexico
Evaluating stream degradation in Villa De Allende, Mexico
I examined the anthropogenic effects on the water quality of headwater streams in the western mountains of the state of Mexico. Rural development has negative effects on the ecology of local streams by diverting and pumping surface and groundwater, removing riparian forests for the construction of buildings, roads, and agricultural fields, and dumping refuse in stream channels. Local development, construction, roads, and agriculture also are sources of pollution that enter the streams during rain events. These negative ecological effects are common to many streams in the watershed of the Chilesdo dam. The combined effects of human development negatively affect the quality of surface water and groundwater aquifers. The issue of anthropogenic effects on the water quality of headwater streams is relevant ecologically because of likely effects on flora and fauna that depend on these streams and because of the role of headwater streams in the context of the larger watershed. Effects on upstream areas directly affect people, animals, and plants downstream. This issue is relevant economically because rural communities depend on the availability of water of suitable quality for agriculture and livestock. In addition, local water quality directly affects the cost of water purification downstream at dams that feed the Cutzamala system, a major source of Mexico City’s drinking water. This issue is relevant socially because the local community depends on this water for domestic consumption. Compromising water quality and abundance could destabilize the lives of local people because poor water quality and water contamination are a public health concern. Additionally, climate change is likely to make this resource scarcer. Projections for all major scenarios used by the International Panel on Climate Change indicate elevated year-round temperatures and decreased overall precipitation in the region (IPCC 2013). I addressed concerns over water quality by testing differences among streams with anthropogenic alterations and a stream that had few anthropogenic alterations. I sampled benthic macro-invertebrate communities as indicators of water quality within the streams. Benthic invertebrates are a useful bio-indicator for water quality and environmental disturbances in river systems because different taxonomic groups of invertebrates have different tolerances to water pollution. I measured the abundance and taxonomic richness of invertebrates that exhibit different sensitivities to water quality. My results revealed that taxonomic richness was lower in streams that had anthropogenic alterations. My results also revealed that the abundance of “sensitive” and “somewhat sensitive species” were lower and that the abundance of “pollution-tolerant species” was higher in streams with anthropogenic alterations. The stream with few anthropogenic alterations had the highest taxonomic richness and largest number of sensitive and somewhat sensitive species. These results indicate that human activities are having negative effects on water quality. Given my results, I suggest that restoration of degraded streams should reduce water diversion, riparian encroachment, and refuse disposal. I propose solutions to guide these restoration efforts. My data suggests that a coordinated local and regional effort is required to reduce the negative effects of human development and to restore local streams to an ecological condition that will sustain water quality and quantity to enable local communities and the local environment to thrive.

Pages