Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Nanaimo River estuary restoration: an assessment of berm removal on benthic macroinvertebrates in tidal channels
Macroinvertebrates in two berm-impacted tidal channels (Site A and Site B) were compared to a natural channel (Site C) to determine short-term response to berm removal restoration using a BACI study design. Multivariate analysis indicates that the benthic community composition shifted from before berm removal to after berm removal conditions but not in a predictable organized way. Total abundance was highest at Site A in both conditions (before and after berm-removal). Invertebrate diversity was similar and low among sites. Biomass was highest at Site C. Organic matter percentage was highest at Site C in both conditions and it appeared to increase in Site A and Site B after berm removal. Silt & Clay (>0.0063mm) were statistically different in Site C compared to Site A and Site B although very fine sand was the highest in percentage among sites and in both conditions. Berms affect channel and benthic invertebrate dynamics; time and more research are needed to fully restore the Nanaimo estuary., © Okezioghene Akporuno, 2020. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Estuary restoration, Tidal channel, Benthic macroinvertebrate, Sediment, Detritus, Berm
Novel ecosystems: necessity, revolution, or laziness?
The earth’s environment, climate, and natural systems are constantly changing, having little resemblance of ecosystems past. These new systems functioning in balance are termed “novel ecosystems” and have arisen as the new normal posing an important question in the restoration field as to how these systems should be approached. To address the state of novel ecosystems in the academic literature, I devised a matrix to assess variables of description regarding novel ecosystems and how they are expressed in the literature. Results showed a predominance of self-assembled systems with a disposition towards invasive species as a primary threat. Chemical, physical, and landscape data was severely lacking and most metrics for success were ecological. Data from the literature show a lack of research on designed novel ecosystems but shows promise for success given several examples. More research on novel ecosystems in restoration must be undertaken to fill gaps in aggregate data., © Michael Paleologou, 2020. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Ecological Restoration, Novel Ecosystems, Literature Review
Phytoremediation of contaminated soils
Phytoremediation poses an ecologically friendly and cost-effective alternative to other remediation methods such as chemical or thermal treatment. However, in contaminated sites such as retired oil wells and brine spills, it is common to have a co-contamination of salt and polyaromatic hydrocarbons (PAHs). The co-contamination of salt and PAHs may decrease the rate and effectiveness of bioremediation. Here we investigated the effect soil salinity has on the rate of phytoremediation, plant survivability and biomass. A 90-day greenhouse study was performed, growing alfalfa (Medicago sativa L.) in soils treated with varying salt (NaCl) concentrations in the presence of pyrene and benzo[a]pyrene. No significant differences were observed in the presence or absence of PAHs. Salt treatments has significant affects on plant biomass, nodulation, and successful germination., Bioremediation, Polyaromatic hydrocarbons, Alfalfa, Salt, Phytoremediation
Plant facilitation effects as a potential restoration tool in riparian ecosystems in Southwestern British Columbia
This study began to investigate potential facilitative effects among shrub species in riparian ecosystems in southwestern British Columbia. I ran two concurrent studies. Six plots for each of four treatments were established at the Coquitlam River Wildlife Management Area. The first two treatments compared the survival, growth, flowering, and herbivory rates of planted twinberry seedlings in plots where the shrub layer was removed to plots where it was not. The other two treatments compared the survival, growth, leaf loss, flowering and herbivory rates of snowberry plants in plots where the salmonberry upper shrub layer was removed to those where it was not. No significant differences between the measured parameters in any of the treatments were found. These results are discussed in the context of the riparian forest ecosystem and current facilitation theory. The results are then used to inform an ecological restoration plan for the Suwa’lkh School Forest., Facilitation, Riparian forests, Native vegetation, Symphoricarpos albus, Lonicera involucrate, Rubus spectabilis, Ecological restoration
A prey-based approach to restoration
Forestry in British Columbia’s old-growth forests has reduced critical foraging and breeding habitat for the coastal northern goshawk (Accipiter gentilis laingi) and restricted population growth. Now at-risk, efforts to recover this subspecies have focused on establishing suitable habitat and a well-distributed population within the province. However, regional diets and associated dynamics are also critical to goshawk recovery and remain poorly understood. Including a synchronous predator-prey recovery approach to current plans can bridge these knowledge gaps. A new model and methods were developed to translate prey biological requirements into structural surrogate features that could be parameterized and ranked within GIS software. Applying these ranks to known goshawk territories in the South Coast allowed for the visualization and quantification of areas with subpar predicted prey abundances. This provided insight on links between prey and forest structure and can be used to direct future restoration and research decisions for coastal goshawk prey-based recovery.
Restoration of salmonid spawning habitat in the Upper Serpentine River
Over the past half century, urbanization has caused drastic changes to the hydrology and geomorphology of streams and rivers. The Serpentine River is a low-elevation, rain-dominant river located in the City of Surrey, British Columbia. Over the years, urbanization of the watershed, particularly in the upper reaches, has degraded what once was high quality spawning habitat for five salmonid species. The current project is an evaluation of previous restoration efforts at seven study sites and a restoration plan to effectively increase spawning habitat in the Upper Serpentine River. Grain size analysis of the study sites found up to 57% fine sediment in the subsurface particles, attributing to siltation rates of 1.2-1.6 kg/m2/day. Erodible grain sizes at the study sites ranged from 29-164 mm, which mostly exceeded the median size of spawning gravel. These results were verified with a tracer rock study, which together concluded that instream structures were required to reduce tractive forces and increase gravel retention. Newbury weirs, or constructed riffles, were proposed as treatments because their hydraulic characteristics increase flow resistance, promote gravel retention, and create intergravel flows. Newbury weirs involve large diameter rocks spanning across the entire stream, causing accumulation of gravel on the upstream side and pool formation downstream side. Substrate scoured at the pool will be deposited at the tail end of the pool, creating spawning habitat in accelerating and downwelling waters. Bank stabilization using dense live staking with a protective rock toe key was prescribed to reduce further channel incision and siltation. In the longterm, watershed-level priorities including passage through the Serpentine sea dam, monitoring for urban contaminants, and installation of green infrastructure was recommended. The proposed treatments are relatively inexpensive, and if successful, will reduce repeat addition of spawning gravel and increase salmonid production in the Serpentine River. However, the value of the current project extends beyond fish productivity estimates. Monitoring data from restoration works can be used to inform future urban stream restoration projects and contribute to the continual improvement of restoration techniques. The effects of restoration on not only sediment form (ie. gravel depth and size) but also processes (ie. sediment scour and fill) should be investigated in the field to verify theoretical models.
Restoration planning for urban salmonid habitat
Restoration of salmonid habitat has been completed in many urban areas; however, the success of these projects may be limited without consideration of water quality. Urban watersheds are affected by stormwater runoff which transfers toxic substances such as heavy metals, hydrocarbons, and fine particles from impervious surfaces into streams. Previous research has documented impacts of stormwater causing premature death in spawning coho (Oncorhynchus kisutch), and related extent of impervious surfaces to impacts on benthic invertebrates. This research aims to expand our knowledge on the effects of stormwater runoff on water quality and benthic invertebrate communities, and make recommendations for restoration of Mosquito Creek, in North Vancouver, British Columbia. Stream water quality was monitored, site habitats were assessed, and impervious surfaces were mapped. Benthic invertebrate samples were collected and analyzed for abundance, diversity, and pollution tolerance, comparing upstream and downstream of a stormwater inflow and two sites on a reference stream. Average water quality measurements showed minor impacts related to elevated temperatures. However, benthic invertebrate metrics revealed chronic water quality issues, reflecting cumulative impacts. Pollution tolerance index and abundance were reduced at the downstream Mosquito Creek site suggesting impacts from the stormwater inflow, while the Ephemoptera, Plecoptera, Trichoptera (EPT) to total ratio and overall stream health (Streamkeepers Site Assessment Rating) were significantly lower at Mosquito Creek overall suggesting watershed impacts from impervious surfaces and point-source pollution events. Restoration recommendations including a rain garden are discussed to improve water quality for salmonids., Restoration, Urban streams, Salmonids, Benthic invertebrates, Water quality, Stormwater
A restoration strategy to avert the projected ecological, social and economic risks of Lost Lagoon in Stanley Park, British Columbia
The coastal saltmarsh that once made up Lost Lagoon was isolated into a freshwater impoundment to enable the construction of the Stanley Park Causeway in 1916. Water chemistry, water nutrients, and subsurface sediment were collected in August to October 2017, and it was concluded that Lost Lagoon is experiencing, low DO (average 6 mg/L), high salinity (0.9 ppt), high nutrient loading (TP 0.1 mg/L and TN 0.9 mg/L) and has elevated heavy metals (Cd, Cu, Ni, Pb, and Zn). A general biotic inventory was conducted and results indicated a lack of native species diversity and presence of invasive species, for both flora and fauna. Projected future conditions concluded that Lost Lagoon is prone to stratification and higher temperatures, which is expected to further water impairment including, increases in NH3 and toxic algae blooms. To mitigate this trajectory, a systematic restoration plan was developed to reintroduce tidal flushing into Lost Lagoon from Coal Harbour’s western basin, thereby restoring the degraded ecosystem into a diverse coastal saltmarsh. Hydrogemorphology and flow rates were estimated and as a result a 1.3-m wide water channel was recommended. A planting and long-term monitoring plan that will aid in revitalization of a coastal saltmarsh was developed, alongside a preliminary project budget and schedule. The project feasibility and public response were discussed as constraints, with emphasis on furthering this proposed restoration plan with professional engineering, and First Nations and public consultation., ecological projections, restoration, urban wetland, saltmarsh, intertidal ecosystems
Restoring a culturally eutrophic shallow lake: Case study on Quamichan Lake in North Cowichan, British Columbia
Quamichan Lake is a culturally eutrophic shallow lake located in North Cowichan on Vancouver Island in British Columbia. My research project examined the current trophic status and water quality of Quamichan Lake and investigated a number of watershed and in-lake restoration methods to return the lake back to mesotrophic (nutrient rich) conditions. Based on the data collected, Quamichan Lake is currently in a hypertrophic state caused by excess phosphorus inputs that leads to Cyanophyte phytoplankton species (cyanobacteria) to dominate during the summer. Eutrophication is both an environmental and human health issue as cyanobacteria algal blooms can disrupt the lake ecology and are toxic to most mammals. The goal of my research was to provide the Municipality of North Cowichan and Vancouver Island Health Authority with a comprehensive restoration plan to contribute to the restoration of Quamichan Lake and other lakes in southern Vancouver Island that are experiencing cultural eutrophication., © Kathleen E Moore, 2019. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Eutrophication, Limnology, Watershed Management, Cyanobacteria, Restoration
Restoring hydro-impacted wetlands for secretive marsh birds
Secretive marsh birds can be difficult to detect and are dependent on wetlands, leaving them vulnerable to wetland loss or alteration. This study examines the influence of management-altered hydrological regimes on five secretive marsh bird species in the West Kootenay and Columbia Wetlands in British Columbia, Canada. Focal species occupied wetlands with less frequently altered hydrological regimes more often and in greater numbers. Occupancy models suggested that woody vegetation, tall vegetation, and open water are important drivers of occupancy for these species. Wetlands most frequently experiencing heavily altered hydrological regimes had more open water and less tall vegetation, both of which were negatively associated with wetland occupancy. Water management operations may be promoting altered vegetation communities within these wetlands, in turn promoting lower occupancy of secretive marsh bird species. Restoration recommendations include: prioritizing lower elevation wetlands, limiting woody vegetation encroachment, and experimentally restoring the hydrological regime of affected wetlands., © Ashleigh M. Westphal 2019. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., secretive marsh bird, Kootenays, British Columbia, hydro, water management, wetlands
A riparian restoration plan for a construction site on the Brunette River
Urbanization has altered riparian ecosystems, resulting in the decline of species that depend on them. The Brunette River in the Lower Mainland of British Columbia is no exception; though it currently supports a range of biotas, many of them are at-risk. These impacts are further accentuated by the expansion of the Trans Mountain Pipeline, which will result in the removal of a portion of critical habitat for the endangered Nooksack Dace. In light of the cultural significance of the basin to Kwikwetlem First Nations, the goal of this plan is to improve conditions at the project site post-construction through the establishment of culturally and ecologically important species and the addition of habitat features. I completed soil, vegetation, and water quality surveys to inform my prescriptions. Recommendations include the management of non-native species using manual and mechanical control methods and the planting of a native riparian community that fits within the confines of human infrastructure. A robust monitoring plan is also provided., critical habitat, exotic species, First Nations, restoration, riparian, urbanization
Simplified structure or fewer arthropods to eat?
In agricultural landscapes, hedgerows provide critical habitat for songbirds. Himalayan Blackberry (Rubus armeniacus; HBB) is a widespread invasive species in the Pacific Northwest that has been linked to lower breeding songbird diversity. My study explored two possible explanatory mechanisms: educed structural complexity and lower arthropod abundance as a food source. I conducted avian point counts in 51 hedgerow segments at two locations in the Lower Mainland of British Columbia. In these segments, I quantified vegetation structure using a Foliage Height Diversity (FHD) metric derived from LiDAR data. I sampled arthropod abundance on the foliage of woody understory vegetation. I used multiple regression to identify best fit generalized linear models. Songbird diversity decreased with HBB % cover and increased with FHD. However, arthropod abundance was unrelated to bird metrics, and similar between HBB and other native shrubs. This suggests that hedgerows should be managed to control HBB and maximize vegetation structure., songbird diversity, agricultural landscapes, Himalayan Blackberry, hedgerows, arthropods, LiDAR

Pages