Master of Science in Ecological Restoration Applied Research Projects
Description
This is Canada’s first master’s program specializing in Ecological Restoration and is offered as a joint program between British Columbia Institute of Technology (BCIT) and Simon Fraser University (SFU). The MSc in Ecological Restoration combines the strong technical and applied (experiential) knowledge at BCIT with SFU’s fundamental (contextual) basic science and community engagement expertise.
This research compares whale and marine vessel detection methods through performance metrics adapted from machine-learning models. Monitoring whale habitat use and vessel infractions in exclusion zones can inform adaptive management for whale recovery efforts. Land-based cetacean observation (LBCO) surveys and dedicated vessel surveys (DVS) were conducted during the summer of 2023 and are considered the gold standard methods for this study. Data collected for comparison from alternative detection methods include a citizen science network, thermal imaging, acoustic, radar, and automatic identification systems (AIS). The citizen science network was the most reliable method for whale detection of all species observed. Vessel detection methods demonstrated similar overall detection reliability, as radar consistently had higher recall values while AIS consistently had higher precision values. Differing scenarios where human observation is unlikely to be the gold standard are discussed and are recommended as a topic for continued research., killer whales, humpback whales, marine vessels, detection methods, performance metrics, Salish Sea
Amphibian species are globally at risk, with a leading cause of decline attributed to habitat loss and fragmentation. The northern red-legged frog (NRLF) is one such species and listed as a Species of Special Concern by the Species at Risk Act. The Sunshine Coast Wildlife Project is creating new wetland habitat on the Sechelt Peninsula. In this research, I provide a tool to explore the relative effects on the functional connectivity of different potential restoration sites. A habitat suitability model (HSM) was created to describe the landscape in terms of conductance, or ease of movement for NRLF. Using this conductance map, I analysed the functional connectivity between wetlands by using Circuitscape, a software grounded in circuit theory. Three potential restoration options were compared against the existing landscape. Of the three options, one had a much greater effect in increasing the overall wetlands and its connectivity to the existing network of wetlands., Functional connectivity, wetland habitat restoration, northern red-legged frog (Rana aurora), circuit theory, Circuitscape, habitat suitability model (HSM)
Flooding poses a significant challenge for coastal cities worldwide, and recent interest has focused on implementing nature-based infrastructure projects for coastal flood risk management. However, a lack of monitoring data and technical guidance hampers their adoption. This study addresses this gap by providing wave transmission coefficients (Kt) for four edge treatment features at the Living Dike pilot project in Boundary Bay, British Columbia. Near-shore wave data from RBR pressure sensors deployed in cross-shore transects at the project site are supplemented by biweekly field observations assessing treatment stability and weathering. The four edge treatment features provided statistically significant reductions in wave height, with the brushwood dam exhibiting the lowest wave transmission coefficients at values of relative freeboard to significant wave height below -2 (0.25 < Kt < 0.75). These findings offer valuable insights into the use of nature-based infrastructure projects for coastal flood risk management strategies., Living Dike, coastal flooding, wave attenuation, tidal marsh, nature-based solutions, ecological restoration
Geochemical and biological attributes of three intertidal areas in the Squamish Estuary with different levels of disturbance (low, medium, and high) were assessed to determine short-term ecosystem responses to localized restoration efforts conducted one year previously on a former log handing site. Sediment and macroinvertebrate variables were analyzed among sites to characterize the ecosystems response and provide insight on the nature and process of an assisted successional trajectory. Invertebrate composition and biomass were lowest on the site with the highest level of disturbance. The high disturbance site also contained the highest percentage of fine sand (0.0067 mm to 0.25 mm). This confirms that in the short term there are distinct site responses to disturbance and ameliorative restoration efforts – even in a highly dynamic estuarine environment. The medium site contained more invertebrates than the low disturbance site indicating that something other than localized disturbance is affecting the invertebrate community on the low site. All sites exhibited a less-rich and less diverse invertebrate community than that of historical records (circa. 1970-1980). Invertebrate community in the east delta today is more typical of estuarine environments with higher salinity levels - which indicates more widespread levels of disturbance throughout the Estuary is affecting the study sites. This
study highlights the importance of considering temporal and spatial scales when setting restoration goals, objectives and creating monitoring plans. Additional monitoring of sediment, invertebrate, and other variables on restored and reference sites is recommended to characterize typical recolonization and reassembly attributes of restoring intertidal estuaries in coastal British Columbia. This would provide evidence and rigor in determining effective restoration techniques and management strategies for a critical and increasingly threatened ecosystem., Macroinvertebrates, Restoration, Sediment, Benthic ecology, Estuaries, Intertidal flats
A bog is a type of wetland with a high water table, acidic soil and is nutrient poor. Camosun Bog is the oldest bog in the Lower Mainland of British Columbia, and remained undisturbed until development of the surrounding residential neighborhood caused changes to its groundwater conditions, threatening its current persistence. The goal of this study is to provide an updated examination of Camosun Bog’s groundwater conditions and to discuss relevant bog restoration measures. Groundwater elevation and chemistry (pH, conductivity, nitrogen and phosphorus) were monitored for several months in 2019. Results indicate that current groundwater elevations are lower in Camosun Bog than they were thirty years ago, especially in the north and northeast regions. Locations in the north and center parts of the open bog experienced groundwater nitrogen enrichment and higher pH, indicating that raising the water table should be the main goal of restoration for Camosun Bog.
A full composition study of some key Fraser River foreshore marshes, Boundary Bay, Brunswick Point, Westham Island, Lulu Island, and Sea Island, had not been done in several decades, during which a large-scale marsh recession event occurred at two of the marshes. The vegetation composition is measured in this study with relation to soil water, soil pore water salinity, and elevation. The results in this study show a shift in the vegetation composition in some areas of the Lulu Island marsh, with the other marshes remaining relatively similar to historical data. The plant species’ tolerance to soil water, soil salinity, and elevation vary in each marsh, illustrating the need for individualized restoration plans for each marsh. Conserving and restoring these marshes is critical in light of the many changes in the Fraser River delta, including sea level rise, increased geese populations, altered sediment regimes, and urbanization., Fraser River, brackish marsh, salt marsh, vegetation composition, salinity, elevation
Coastal wetlands are an important ecosystem in the Great Lakes basin, providing spawning grounds and warm-water refuge for numerous fish and benthic invertebrate species during cold water upwelling events. Urbanization along the northwestern shore of Lake Ontario has led to a depletion of coastal wetlands, replacing them with artificial embayments. Three artificial embayments, the Credit River estuary, and one coastal marsh in Mississauga, ON were studied to determine if the artificial embayments function as warm-water refuge during upwelling events. Temperature loggers were placed in each study site and temperature was recorded every 15 minutes from July to October 2017. Upwelling events were isolated from the data, and frequency, magnitude, and duration of upwelling was determined. Most study sites had a frequency of 4 upwelling events throughout the study period. The average duration of upwellings varied from 30 to 70 hours, and the average temperature change ranged from -7.1ᵒC to -11.9ᵒC. All of the study sites seemed to buffer upwellings by reducing the magnitude of temperature change and increasing the duration of upwelling events to varying degrees. These results will inform the creation of future wetlands, restoration of existing embayments, and conservation of Great Lakes coastal wetlands., ecological restoration, coastal embayments, coastal marsh, upwelling, warm-water refuge, Lake Ontario
This study investigates the outcomes of restoration efforts completed on retired agricultural land in Southwest Ontario. Sites acquired by the Nature Conservancy of Canada were planted to kickstart succession to native deciduous forests, but the results of the plantings are mixed. Analysis of soil conditions indicated that low levels of soil organic carbon were correlated to low water content and high density unfavourable for plant growth. Analysis of remotely sensed imagery was done to assess and compare vegetation cover to reference conditions at Walpole Island First Nation. Analysis revealed that successful restoration was dependent on multiple soil characteristics, but conditions correlated to higher total organic carbon favoured greater vegetation cover. Remote sensing data revealed that succession towards tree canopy development was accelerated compared to passive restoration, and a shaded understory was established approximately 8-12 years following restoration. Future work can expand on succession and the effects of other restoration treatments., Soil, Reforestation, NDVI, Agriculture, Restoration, Secondary succession
Road mortality poses a significant threat to freshwater turtles globally, including the western
painted turtle (Chrysemys picta bellii). Even low levels of road mortality can severely impact the
long-term survival of these long-lived reptiles. While mitigation infrastructure is employed to
reduce mortality, its effectiveness may vary depending on the location and species involved.
Population viability analysis can be a valuable alternative for wildlife managers to assess the
viability of the populations they monitor and the potential impact of management decisions, but
are most useful when data from target populations is available. This research project aimed to
evaluate the long-term persistence of a rural western painted turtle population experiencing road
mortality. The study first investigated the effectiveness of a turtle tunnel and drift fencing in
reducing road mortality. Parameters derived from the population were then used to model the
long-term viability of the turtle population in the program Vortex under various scenarios of
ongoing road mortality. This study analyses three years of mark-recapture, ratio telemetry
tracking, and road mortality surveys done by contractors and summer hires of the Ministry of
Water, Land, and Resource Stewardship at Baynes Lake, BC. The turtle population was
estimated to be 1,451 (SD= 75) individuals, with a female-biased sex ratio (1.5 females: 1
male). Only a quarter of sexually mature females were found to be gravid in a given year, with
gravid females laying only one clutch. Subadult and adult survivorship were calculated using the
same dataset employed for the population estimate, resulting in a survivorship rate of 96.4%
(SD = 1.3%) per year. Radio telemetry was used to assess the number of road crossings made
in a given year. Gravid females were found to make a higher average number of road crossings
(1.6 road crossings per season) than males (0.1 road crossings per season) or non-gravid
females (0.7 road crossings per season). In 2021, an under-road turtle tunnel was installed in
Baynes Lake, followed by the installation of drift fencing in the spring of 2023. Over time and
after the implementation of drift fencing, more turtles were observed encountering the installed
turtle tunnel. However, evidence regarding the complete traversal of the turtle tunnel was not
conclusive. Before the installation of the turtle tunnel, casual community-led surveys in 2021
estimated a mortality rate of 1% of the population. Mortality rates, calculated over the duration of
the survey periods, decreased after the installation of the turtle tunnel (0.1 mortalities per day in
2022) and further decreased after drift fencing was installed (0.03 mortalities per day). The
long-term viability of the Baynes Lake population was modeled in Vortex, with additive road
mortality modeled as a percentage loss of the population. The road mortality rate of 1% additive
mortality, seen before road mortality reduction strategies, resulted in a 60% decrease of the initial population after 100 years. This indicates that even low levels of additive adult road
mortality can lead to declines in the Baynes Lake western painted turtle population. Sensitivity
testing of the model indicates that the Baynes Lake population is highly sensitive to changes in
adult/subadult and juvenile mortality. Pre-mitigation mortality levels had the potential to
dramatically impact the population of Baynes Lake. It is crucial to acknowledge and address
what may appear to be relatively low levels of roadway mortality in rural areas, as even these
seemingly modest rates can have a significant impact on western painted turtle populations., Western painted turtle, Chrysemys picta bellii, roadway mortality, population viability modeling, population estimate, scavenge rate
In recent decades, the exotic cattail Typha angustifolia and its hybrid Typha x glauca have invaded the Fraser River estuary. The impacts from this invasion on benthic macroinvertebrate communities, however, are yet to be studied. Macroinvertebrates play important roles in food chains, trophic dynamics, and nutrient cycling and are potentially at risk from this invasion. In this study, I compared the benthic invertebrate communities between exotic cattail stands and native vegetation stands at 25 paired sites. Sediment cores were analyzed for invertebrate abundance, biomass, and Shannon Wiener diversity index, and it was found that biomass and abundance were lower in exotic cattail when compared to native vegetation, however, there was no difference in diversity. Given the proximity to side channels, tidal inundation time would be a logical explanation for the differences in the benthic communities; however, it was not found to be a significant predictor. Given the invasive nature of exotic cattail and the correlations that were found, cattail should be removed in restoration projects where possible., Fraser River, Typha x glauca, Estuary, Invasive species, Typha angustifolia
Bog wetlands store a disproportionate amount of carbon for their size, making their conservation an important part of climate change mitigation. The goal of this project is to investigate how roads and agriculture impact the hydrology and vegetation composition of Langley Bog and to provide restoration recommendations. Langley Bog, in Langley Township, BC, is a formerly mined peatland with a fill road running through the center and surrounded to the north and west by cranberry farms. From November 2020 to November 2021, depth to water table and pH were measured monthly at nine wells. Twelve vegetation transects were completed in July 2021. Sites adjacent to the road were correlated with a decrease in summer water level, while sites adjacent to the cranberry farms were correlated with an increase in spring pH levels. A positive relationship was found between an increase in water-table level and percent cover of wetland obligate species. Roads may be lowering the water table through subsidence and drainage. The cranberry farms may be increasing the pH through the deposition of fertilizer. These impacts may have been exacerbated by the unusually dry 2021 summer season.
To raise the water table, tree and road removal is recommended to restore lateral flow and decrease evapotranspiration. Culverts installed under the primary fill road will provide additional hydrologic connectivity. Building a berm at outlet points will also help prevent water loss, keeping a higher water table. To increase carbon sequestration, Sphagnum mosses are to be reintroduced to denuded areas in Langley Bog. Tree removal will help in moss establishment by maintaining open bog conditions free from shading. Existing rare ecosystems present in Langley Bog would benefit from the removal of point source pollutants and invasive species on the site. Given the urgency of climate change, restoring the functionality of Langley Bog and protecting the existing stored carbon is a practical and achievable way to move Metro Vancouver a step closer to carbon neutrality., peatlands, ecological restoration, water levels, pH, sphagnum
Burrowing owls (Athene cunicularia) were considered extirpated from British Columbia by 1980 and still require active management to sustain a breeding population. My research objective was to investigate if predator-prey interactions limit the survival and reproductive output of burrowing owls in British Columbia. Wildlife camera photographs and direct observations were used to assess survival, prey return rate and availability, and predator occurrence rate at six different conservation-breeding release sites across two regions and three reproductive-output levels. Ten out of the twelve nests studied successfully produced at least one juvenile owl that is presumed to have survived to the end of the 2023 breeding season. Results indicate that there may be regional differences in reproductive output and prey availability but not predator occurrence. Neither prey availability nor predator occurrence were significantly correlated with burrowing owl reproductive output, although some prey metrics were trending towards significance. However, competition over food resources with other species may be more detrimental to burrowing owls than previously thought, particularly over vertebrate prey items. Relationships between burrowing owls and the other species they interact with in British Columbia are complex; predator-prey dynamics alone do not account for the variability of burrowing owl success rates across the region. Active management such as supplemental feeding and anti-competitor deterrents at the entrances to burrows may be necessary to support this endangered species until it has reached more sustainable population numbers., burrowing owl, endangered species, wildlife management, predator-prey, trail cameras
Kelp is an ecologically, economically, and culturally important species that is facing global declines. This pilot project investigated if declines in Bull Kelp in the Saturna Island Interim Sanctuary Zone could be attributed to increased herbivory by sea urchins, and/or thermal stress caused by increased ocean temperatures. In areas where sea urchins were excluded, bull kelp was more abundant and in areas where sea urchins were not excluded, heavy grazing was observed. Throughout the summer 2023 study period, sea surface temperature did not exceed bull kelp’s adult or gametophyte thermal tolerance.
Restoration of this site should include methods to reduce sea urchin herbivory, while
carefully considering cultural and ecological implications., macroalgae, sea urchin, bull kelp, kelp restoration, herbivore exclusion
Burns Bog is a raised ombrotrophic bog in Delta, British Columbia and faced with myriad disturbances. This study is focused on the impact and restoration of peat extraction by the Atkins-Durbrow Hydropeat method. Depth to water table, relative abundance and distribution of vegetation, and the degree of peat decomposition at consistent-depth intervals were investigated to elucidate the status of passive and active ecological restoration in three fields previously harvested for peat approximately one decade apart and compared to a fourth unharvested field. Summary statistics, Redundancy Analysis, and regression were used to compare restoration status and trends in hydrology, vegetation composition, and peat accumulation. A lag period between cessation of harvest and implementation of restoration, coupled with rapid anthropogenic climate change, serve as impediments to restoration here. Intervention in the form of improved rainfall retention, assisted recolonization, and the introduction of nurse species are recommended to improve bog function and resiliency., Atkins-Durbrow Hydropeat method, Ditch blocking, Ecological restoration, Peat extraction, Raised ombrotrophic bog, Burns Bog
The MacKay Creek Estuary, is a severely altered estuarine ecosystem located within an active international port in Vancouver, British Columbia. Several elevated salt marsh terraces were constructed as part of a larger restoration project within the MacKay Creek Estuary. Site visits conducted in 2018 revealed 75% of the terrace surface area failed to establish salt marsh vegetation. Significant difference in soil pore-water salinity, oxidation reduction (redox) potential and tidal elevation were found between vegetated and unvegetated portions of the terraces. Additionally, exclusion from Canada Geese (Branta canadensis) herbivory increased total percent cover and colonization of the adjacent unvegetated area. The combination of soil parameters and herbivory, as well as potential interactions between factors may be responsible for the lack of vegetation progression within the constructed salt marsh terraces at MacKay Creek Estuary., restoration, salt marsh, redox potential, pore-water salinity, MacKay Creek, Fraser River, estuary, Canada geese
The purpose of this project is to develop an ecological restoration plan for degraded habitats on mid-channel islands in the lower Fraser River. The study focuses on Herrling, Carey, and Strawberry islands, large mid-channel islands located in the gravel reach between Mission and Hope, British Columbia. These islands are known to be critical off-channel rearing habitat for many fish species including the threatened White Sturgeon (Acipenser transmontanus) and interior and lower Fraser watershed Chinook Salmon (Oncorhynchus tshawytscha) populations. These islands are also home to many riparian plant and animal species. The flood-pulse concept (FPC) states that seasonal fluctuations in water levels for streams such as the Fraser River contribute substantially to the ecological function of the floodplain ecosystem where this phenomenon occurs. This often results in improved growth and survival rates for fish species that rely on a laterally-moving littoral zone of inundation. This phenomenon is thought by many to be the key to a properly functioning ecosystem in the lower Fraser River. Using a Digital Elevation Model (DEM) for the Fraser River between Hope and Mission, British Columbia, freshet flows (high water elevations) are presented to define the spatial extent of over-bank watering of Strawberry, Carey and Herrling islands. This over-bank watering provides lateral connectivity to floodplain islands. Based on extensive sampling in other studies, this lateral movement results in the creation of high-quality juvenile fish rearing habitat. A restoration plan is presented for those areas of Strawberry, Carey and Herrling islands degraded by recent land clearing for agriculture where they overlap sections defined as fish habitat from the spatial analysis., gravel reach, mid-channel islands, floodplain fish habitat, flood pulse concept, juvenile Chinook Salmon, lower Fraser River, White Sturgeon