Master of Science in Ecological Restoration Applied Research Projects
Description
This is Canada’s first master’s program specializing in Ecological Restoration and is offered as a joint program between British Columbia Institute of Technology (BCIT) and Simon Fraser University (SFU). The MSc in Ecological Restoration combines the strong technical and applied (experiential) knowledge at BCIT with SFU’s fundamental (contextual) basic science and community engagement expertise.
Assessing restoration success for pond-breeding amphibians frequently focuses on hydrology, water quality and vegetation, while neglecting the requirements of amphibians that use the restored areas for breeding. Both biotic and abiotic conditions can influence oviposition-site selection of amphibians that do not provide parental care. This study examines how vegetation structure and abiotic variables affect oviposition-site selection by amphibians. The goal of my study was to better understand the requirements of pond-breeding amphibians. In 2017, I surveyed egg masses in four ponds at the Sunshine Coast Botanical Garden in Sechelt, B.C. I identified 667 egg masses of four native amphibian species that varied in abundance and species richness among ponds. I recorded five biotic variables (i.e., vegetation cover, vegetation type, stem density, stem diameter, and canopy closure) and two abiotic variables (i.e., water depth and solar radiation) at egg-mass sites and random sites where no egg masses were detected. Logistic regression analysis with backward elimination revealed that stem count (p = 0.008) and water depth (p = 0.0001) significantly influenced oviposition-site selection. The results also showed that higher stem density and shallower water depth increased the likelihood of egg masses being present. My study indicated that quantifying stems in the water column characterized vegetation density better than estimating percent cover of vegetation. Shallow areas that have structurally complex vegetation might provide an advantage for the offspring by increasing refuge, food resources, and favourable thermal conditions for egg development. Hence, restoration projects could incorporate vegetation structure and shallow areas in their pond designs to potentially increase the abundance and diversity of amphibian communities, thereby contributing to successful restoration projects., ecological restoration, amphibians, oviposition, Rana aurora, Pseudacris regilla, Ambystoma gracile, Amystoma macrodactylum, vegetation structure, abiotic variables
In the Fraser River Estuary of British Columbia, tidal marshes have been receding and converting into unvegetated mudflats since the 1980s. While there are many hypotheses for this recession, the effect of avian herbivory is poorly understood. This study assessed how Canada Goose (Branta canadensis) and Snow Goose (Chen caerulescens) herbivory affected cover of tidal marsh vegetation that was comprised mainly of three-square bulrush (Schoenoplectus pungens) in the Westham Island tidal marsh. I conducted two field-based exclosure experiments, marsh edge and mudflat, that used exclosure plots to reduce specific goose herbivory in a randomized block design. Each experiment consisted of four blocks each of which was comprised of four treatments: open to goose herbivory, excluded all goose herbivory, primarily excluded Canada Goose herbivory, or primarily excluded Snow Goose herbivory. The marsh edge experiment used exclosures centered on the vegetated edge of the marsh, while the mudflat experiment was conducted in the unvegetated mudflat and were transplanted with S. pungens. Based on results from July to October of 2020, percent cover of tidal marsh vegetation was about 20% lower in plots open to Canada Goose herbivory versus those that excluded geese. Snow Goose herbivory could not be accurately assessed as they arrived when S. pungens were dormant. Thus, deterring goose herbivory may be an important consideration for land managers in restoring tidal marshes. Additionally, I compared percent cover from drone-derived remote sensing to traditional ground-based visual estimates of percent cover of S. pungens in the tidal marsh. One per month, from July to October of 2020, I used a drone to take photos of the exclosures from the previous experiments, and used pixel counts to calculate the percent cover of S. pungens. I then used a t-test to compare the drone-derived percent cover to the ground-based estimates and found no significant difference (t = 0.58, p = 0.56). I then plotted a linear regression model and found a strong correspondence between both methods (R² = 0.99, p = 1.3e-139). So, remote sensing using drones appears to be an effective alternative to visual estimates of percent cover of tidal-marsh vegetation in the Westham island tidal marsh., Tidal marsh recession, Goose herbivory, Canada Goose, Snow Goose, Schoenoplectus pungens, Drones
Spotted knapweed (Centaurea stoebe) is a non-native invasive forb found throughout North America that suppresses native vegetation and reduces biodiversity. The designation of Blakiston Fan (Waterton Lakes National Park, Alberta) as critical habitat for the endangered half-moon hairstreak butterfly (Satyrium semiluna) brought forward concerns of the effects of knapweed management practices on the hairstreak and its native larval and nectar host plants. This pilot study used a randomized complete block design to examine the within-season change in cover of spotted knapweed and silky lupine (Lupinus sericeus) in response to herbicide application and two timings of manual removal (i.e., mid-June and late-July). This study also examined changes in the vegetation community and relative abundance of hairstreak butterflies across the fan. Significant treatment effects (p= 0.006, f3, 12= 6.89) were seen in the change in percent cover of spotted knapweed two weeks post-treatment between herbicide and control plots. There was no significant difference in the change in lupine percent cover among treatments (p= 0.075, f3, 12= 2.96). Cover of native host plants and hairstreak abundance were greatest in the south fan. Increases in knapweed cover were lowest in the south fan. Based on these results, a triaged management plan was recommended with restoration efforts focused on the south fan. Recommendations for the south fan include selective herbicide application to limit spotted knapweed distribution, closure of horse trails, and a native planting and seeding experiment. Management of the north and central fan was recommended to focus on the control of knapweed monocultures through intensive herbicide application and establishing biological control agents for long-term control. Further research of the hairstreak lifecycle is needed to understand the primary mechanism of decline, as well as, research into the response of native nectar host plants to knapweed control. Monitoring the response of the vegetation community and relative abundance of hairstreaks following the Kenow fire of 2017 is key in prioritizing restoration actions for Blakiston Fan., vegetation mapping, species at risk, host plant, invasive species, ecological restoration, Aminopyralid
Amphibian species are globally at risk, with a leading cause of decline attributed to habitat loss and fragmentation. The northern red-legged frog (NRLF) is one such species and listed as a Species of Special Concern by the Species at Risk Act. The Sunshine Coast Wildlife Project is creating new wetland habitat on the Sechelt Peninsula. In this research, I provide a tool to explore the relative effects on the functional connectivity of different potential restoration sites. A habitat suitability model (HSM) was created to describe the landscape in terms of conductance, or ease of movement for NRLF. Using this conductance map, I analysed the functional connectivity between wetlands by using Circuitscape, a software grounded in circuit theory. Three potential restoration options were compared against the existing landscape. Of the three options, one had a much greater effect in increasing the overall wetlands and its connectivity to the existing network of wetlands., Functional connectivity, wetland habitat restoration, northern red-legged frog (Rana aurora), circuit theory, Circuitscape, habitat suitability model (HSM)
Prairie dogs (Cynomys ludovicianus) are considered a keystone species due to their ecological role in maintaining the prairies. In Canada, they are federally listed as a threatened species. This study was conducted to identify the limiting factors to the expansion of prairie dog colonies in Grasslands National Park, Saskatchewan. I tested different hypotheses to compare landforms, vegetation, and soil characteristics in three treatments: consistently occupied (Consistent), inconsistently occupied (Inconsistent), and never occupied (Buffer) by prairie dogs. I sampled four prairie dog colonies (blocks) from 17 July 2019 to 28 August 2019 using a randomized complete block design. I used ANOVA to test variables for significant differences among treatments. My results showed that hills, water channel, shrublands, grass cover, shrub cover and vegetation height classes (>30 cm) were significantly higher (p <0.05) in Buffer compared to Consistent and Inconsistent. Shrubs and tall vegetation should be mowed down to enhance the expansion of prairie dog colonies for restoring their population., restoration, prairie dogs, Cynomys ludovicianus, colony expansion, barriers, habitat use
A bog is a type of wetland with a high water table, acidic soil and is nutrient poor. Camosun Bog is the oldest bog in the Lower Mainland of British Columbia, and remained undisturbed until development of the surrounding residential neighborhood caused changes to its groundwater conditions, threatening its current persistence. The goal of this study is to provide an updated examination of Camosun Bog’s groundwater conditions and to discuss relevant bog restoration measures. Groundwater elevation and chemistry (pH, conductivity, nitrogen and phosphorus) were monitored for several months in 2019. Results indicate that current groundwater elevations are lower in Camosun Bog than they were thirty years ago, especially in the north and northeast regions. Locations in the north and center parts of the open bog experienced groundwater nitrogen enrichment and higher pH, indicating that raising the water table should be the main goal of restoration for Camosun Bog.
Coastal wetlands are an important ecosystem in the Great Lakes basin, providing spawning grounds and warm-water refuge for numerous fish and benthic invertebrate species during cold water upwelling events. Urbanization along the northwestern shore of Lake Ontario has led to a depletion of coastal wetlands, replacing them with artificial embayments. Three artificial embayments, the Credit River estuary, and one coastal marsh in Mississauga, ON were studied to determine if the artificial embayments function as warm-water refuge during upwelling events. Temperature loggers were placed in each study site and temperature was recorded every 15 minutes from July to October 2017. Upwelling events were isolated from the data, and frequency, magnitude, and duration of upwelling was determined. Most study sites had a frequency of 4 upwelling events throughout the study period. The average duration of upwellings varied from 30 to 70 hours, and the average temperature change ranged from -7.1ᵒC to -11.9ᵒC. All of the study sites seemed to buffer upwellings by reducing the magnitude of temperature change and increasing the duration of upwelling events to varying degrees. These results will inform the creation of future wetlands, restoration of existing embayments, and conservation of Great Lakes coastal wetlands., ecological restoration, coastal embayments, coastal marsh, upwelling, warm-water refuge, Lake Ontario
In recent decades, the exotic cattail Typha angustifolia and its hybrid Typha x glauca have invaded the Fraser River estuary. The impacts from this invasion on benthic macroinvertebrate communities, however, are yet to be studied. Macroinvertebrates play important roles in food chains, trophic dynamics, and nutrient cycling and are potentially at risk from this invasion. In this study, I compared the benthic invertebrate communities between exotic cattail stands and native vegetation stands at 25 paired sites. Sediment cores were analyzed for invertebrate abundance, biomass, and Shannon Wiener diversity index, and it was found that biomass and abundance were lower in exotic cattail when compared to native vegetation, however, there was no difference in diversity. Given the proximity to side channels, tidal inundation time would be a logical explanation for the differences in the benthic communities; however, it was not found to be a significant predictor. Given the invasive nature of exotic cattail and the correlations that were found, cattail should be removed in restoration projects where possible., Fraser River, Typha x glauca, Estuary, Invasive species, Typha angustifolia
Bog wetlands store a disproportionate amount of carbon for their size, making their conservation an important part of climate change mitigation. The goal of this project is to investigate how roads and agriculture impact the hydrology and vegetation composition of Langley Bog and to provide restoration recommendations. Langley Bog, in Langley Township, BC, is a formerly mined peatland with a fill road running through the center and surrounded to the north and west by cranberry farms. From November 2020 to November 2021, depth to water table and pH were measured monthly at nine wells. Twelve vegetation transects were completed in July 2021. Sites adjacent to the road were correlated with a decrease in summer water level, while sites adjacent to the cranberry farms were correlated with an increase in spring pH levels. A positive relationship was found between an increase in water-table level and percent cover of wetland obligate species. Roads may be lowering the water table through subsidence and drainage. The cranberry farms may be increasing the pH through the deposition of fertilizer. These impacts may have been exacerbated by the unusually dry 2021 summer season.
To raise the water table, tree and road removal is recommended to restore lateral flow and decrease evapotranspiration. Culverts installed under the primary fill road will provide additional hydrologic connectivity. Building a berm at outlet points will also help prevent water loss, keeping a higher water table. To increase carbon sequestration, Sphagnum mosses are to be reintroduced to denuded areas in Langley Bog. Tree removal will help in moss establishment by maintaining open bog conditions free from shading. Existing rare ecosystems present in Langley Bog would benefit from the removal of point source pollutants and invasive species on the site. Given the urgency of climate change, restoring the functionality of Langley Bog and protecting the existing stored carbon is a practical and achievable way to move Metro Vancouver a step closer to carbon neutrality., peatlands, ecological restoration, water levels, pH, sphagnum
Burrowing owls (Athene cunicularia) were considered extirpated from British Columbia by 1980 and still require active management to sustain a breeding population. My research objective was to investigate if predator-prey interactions limit the survival and reproductive output of burrowing owls in British Columbia. Wildlife camera photographs and direct observations were used to assess survival, prey return rate and availability, and predator occurrence rate at six different conservation-breeding release sites across two regions and three reproductive-output levels. Ten out of the twelve nests studied successfully produced at least one juvenile owl that is presumed to have survived to the end of the 2023 breeding season. Results indicate that there may be regional differences in reproductive output and prey availability but not predator occurrence. Neither prey availability nor predator occurrence were significantly correlated with burrowing owl reproductive output, although some prey metrics were trending towards significance. However, competition over food resources with other species may be more detrimental to burrowing owls than previously thought, particularly over vertebrate prey items. Relationships between burrowing owls and the other species they interact with in British Columbia are complex; predator-prey dynamics alone do not account for the variability of burrowing owl success rates across the region. Active management such as supplemental feeding and anti-competitor deterrents at the entrances to burrows may be necessary to support this endangered species until it has reached more sustainable population numbers., burrowing owl, endangered species, wildlife management, predator-prey, trail cameras
Stormwater runoff from parking lots often contains a variety of elements and compounds in different forms and concentration that may pose risks to biota in receiving aquatic systems. Heavy metals including lead (Pb), cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) are of particular concern in such runoff due to their prevalence, toxicity to aquatic organisms and persistence in environment. The ability of commercially available biochar to remove pollutants of concern through column treatments was assessed in this research. Different treatments of biochar were considered and their ability to remove pollutants was compared to soil. The biochar (Emergent and Cantimber) used in this study showed a significant higher molecular weight PAHs removal ability compared to soil and followed the order of Cantimber > Emergent > soil. The effects of heavy metals and PAHs on aquatic organisms and plants degradation can be mitigated by amending the soil media with biochar in the bioretention cells such as raingarden. This could be applied in real world where stormwater runoff can be treated before entering into river or stream therefore cutting the need of future restoration., Emergent Biochar, Cantimber Biochar, Parking lot stormwater, Low impact development, Heavy metals, PAHs, Constructed wetlands
Coastal wetlands are naturally resilient to changing sea levels; however, as rates of sea-level rise increase, the interaction between changing sea-level and ongoing human impacts will be a major driver in future coastal tidal marsh stability. My goal is to provide decision makers with recommendations to increase the resilience of the Fraser River delta front tidal marsh communities over the twenty-first century. I conducted a literature review to (1) examine the current knowledge base regarding effects of sea-level rise on tidal marshes and (2) identify current ecosystem-based adaptation strategies for increasing tidal marsh resilience to sea-level rise. Based on this review, recommendations are made for strategies that could be used to increase tidal marsh resilience in the Fraser River delta. Recommendations include (1) initiating delta-wide marsh accretion modeling to assess tidal marsh vulnerability under possible sea-level rise scenarios and (2) implementing sediment augmentation pilot projects for both direct (e.g., layered sediment lifts) and indirect (e.g., mud motor) sediment augmentation strategies to test ecosystem based adaptive management strategies as part of an adaptive management framework.
A meta-analysis using pre-existing data was done for streams in the North Shore of Vancouver, British Columbia. Parameters considered were chemical concentrations from stormwater input including: heavy metals concentrations (Copper (Cu), Zinc (Zn), Cadmium (Cd), Lead (Pb)) and nutrient concentrations (Nitrate (N03-) and Orthophosphate (P04 3-))_ Chronic toxicity guideline exceedance based on the British Columbia Approved Water Quality Guidelines was found in all 94% of stream systems for Cu and 44% of stream systems for Zn. Heavy metal concentrations were found to be positively correlated with percent impervious surface cover in the watershed, with the strength of the correlation being metal-dependent. Three sites within the study had the highest levels of both Cu and Zn. These watersheds (Upper Keith Creek, Maplewood Creek, and Mackay Creek) were prioritized for rain garden installation. Rain garden building specifications to remediate for Zn and Cu were recommended and included addition of mulch layer, minimum depth of topsoil (30 cm), and vegetating with plants with high potential for biofiltration and/or phytoremediation., Impervious surface cover, Stormwater, Rain garden, Green infrastructure, Heavy metal analysis
Salmonids are a very important species to British Columbia and the Pacific Northwest. They are an icon of British Columbia’s heritage and they hold many ecological, economical, recreational, and cultural values. Unfortunately, Pacific salmonid populations have been declining over the last century due many reasons including degradation of freshwater habitat used for spawning and rearing. This degradation is largely due to expanding urbanization and the installation of dams for flood control, hydropower and water supply.
The Seymour River is a mountainous river located in North Vancouver. Over the past century, this river has been subjected to many anthropogenic activities that have cumulatively altered the natural flow and sediment regime. The Seymour Falls Dam, located in the middle of the watershed, intercepts gravel transport from the upper watershed into the lower reaches. This combined with the intense channelization within the lower 4 km of the river, which has created conditions incapable of gravel deposition and retention, has led the lower reaches to become gravel deficient. This gravel deficiency has caused the degradation of traditional spawning grounds of chum (Oncorhynchus keta), and pink salmon (Oncorhynchus gorbuscha). This study aims to: 1) determine if there is a gravel deficiency for chum and pink salmon spawning in the lower 1.5 km reaches and, 2) provide recommended mitigative treatments of gravel addition to increase suitable spawning area, and therefore increase salmon productivity of the Seymour River.
A site assessment was conducted on the lower 1.5 km of the Seymour River and included sampling of the five key parameters that define spawning habitat (i.e., water depth, velocity, dissolved oxygen, water temperature and substrate). A particular focus was given on analysing the substrate as it was expected to be deficient for spawning due to the predetermined conditions in the watershed such as the dam and the channelization.
Results of the site assessment confirmed that substrate is the limiting factor for chum and pink salmon spawning in this area as the bed surface is composed of large cobbles and boulders too large for these specific species to move to dig a redd. Therefore, a
xi
mitigation plan of gravel addition is proposed to increase spawning habitat and conserve these salmon runs.
Two gravel placement sites were selected between Mt. Seymour Parkway and Dollarton Bridge. A gravel mobility analysis determined that suitable-sized gravel will not be deposited or retained naturally on the channel bed due to the slope and water depth at high flood events. Therefore, gravel catchment structures are proposed to dissipate energy, thereby promoting deposition and reducing scouring. Each site contains a different design tailored to the specific characteristics of that reach. To retain gravel, spurs composed of the surface cobbles and boulders are proposed along with imbedded gravel pads composing of suitably sized gravel brought in from a local source. In total these two sites could provide about 1,925 m2 of additional spawning habitat which could support 209-836 pairs of chum or 3,208 pairs of pink salmon.
Through long-term monitoring, this project in the Seymour River could provide strategies of gravel placement in large, urbanized, gravel-deficient rivers, in which current research is limited. Many rivers in North Vancouver (i.e., Capilano River, Lynn Creek, McKay Creek and Mosquito Creek) may be experiencing a gravel deficit similar to the Seymour River, and the strategies outlined in this project could be adapted to the specific conditions of those rivers. The cumulative effect of adding spawning gravel in each river within the Burrard Inlet, as well as elsewhere in the Pacific Northwest, could reduce stress in their freshwater phase and aid in rebuilding salmon populations from their precipitous decline in which they are on currently on track for.
The strategies provided will also become important as more rivers become sediment deprived due to the construction of hydropower dams in response to a change from fossil fuels to renewable energies as climate change continues. The need for more innovative habitat mitigation strategies will be necessary to keep salmon from becoming a relic of the past.
Forestry in British Columbia’s old-growth forests has reduced critical foraging and breeding habitat for the coastal northern goshawk (Accipiter gentilis laingi) and restricted population growth. Now at-risk, efforts to recover this subspecies have focused on establishing suitable habitat and a well-distributed population within the province. However, regional diets and associated dynamics are also critical to goshawk recovery and remain poorly understood. Including a synchronous predator-prey recovery approach to current plans can bridge these knowledge gaps. A new model and methods were developed to translate prey biological requirements into structural surrogate features that could be parameterized and ranked within GIS software. Applying these ranks to known goshawk territories in the South Coast allowed for the visualization and quantification of areas with subpar predicted prey abundances. This provided insight on links between prey and forest structure and can be used to direct future restoration and research decisions for coastal goshawk prey-based recovery.
Prescribed burning is being used by BC Parks as a restoration tool to maintain the ecologically unique Chittenden Meadow in Skagit Valley Provincial Park. Forest encroachment of conifers in the meadow, due to the absence of fire, has been an ongoing issue since the 1970s. BC Parks in partnership with the BC Wildfire Branch conducted prescribed burns in April 2003 and April 2021 to reduce forest encroachment into the meadow. In 2017, BCIT students re-established a series of plots to compare vegetation community changes with the 2003-2004 prescribed burn data. This data was compared to our 2021 findings. Continued long-term monitoring of the meadow will help to enhance our understanding of vegetation community changes following prescribed fires and will build upon a decade of existing data. The historical extent of the meadow remains unclear; therefore, we conducted a broad fire history study across ~275-ha of forest surrounding the Chittenden Meadow to better understand the area's past fire frequency and severity., prescribed burning, forest encroachment, vegetation community change, fire history study