Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Splendor without spoil: restoring tidal channel habitat on Swishwash Island
Restoration of estuarine and tidal marsh habitats in Canada’s Fraser River estuary is imperative for the conservation and recovery of select depressed Pacific salmon populations and the many species that depend on them. In the 1930’s through to 1940’s, dredge spoils were deposited on East Swishwash Island, permanently altering the small delta island’s geomorphology and ecology. The purpose of this study was two-fold: 1.) Confirm and describe fish use of remnant tidal channel habitat on Swishwash Island, using juvenile Chinook salmon (Oncorhynchus tshawytscha) as a focal species and 2.) Quantify the historical tidal channel loss on East Swishwash Island and potential for restoration. Tidal channels and adjacent marshes were sampled for realized fish use, plant distributions, basic water parameters, and large woody debris (potential predator refugia). Remote data sets (historical and present-day) were used to quantify historic, current, and future tidal channel density scenarios. Swishwash tidal channels were utilized during the sampling period by Chinook salmon with comparable relative abundances and fork lengths. Tidal channel capacity and marsh habitat have been reduced by 50% on East Swishwash Island due to spoil deposition and marsh erosion. Based on reference conditions derived from undisturbed and historic marsh islands, restoring island elevations could facilitate the addition of 1 km of marsh edge while increasing tidal channel area on East Swishwash Island by nearly 200%. This would provide important habitat in a fragmented distributary of the Fraser River estuary to species of fish and wildlife, including 3 ecotypes of juvenile Chinook salmon., © Kyle Armstrong, 2019. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Estuaries, Chinook, Oncorhynchus tshawytscha, rearing, restoration, mitigation, tidal channels
A Test of ARP Topic Categories
This is the abstract text for a test record. ThiThis is the abstract text for a test record. s is the abstract text for a test record. This is the abstract text for a test record. This is the abstract text for a test record. This is the abstract text for a test record. This is the abstract text for a test record. This is the abstract text for a test record. This is the abstract text for a test record., Water reclimation, soil
Testing primed white rot fungi for bioremediation of petroleum hydrocarbon contaminated soil & bioremediation options plan for Napo concession area in Ecuador.
Bioremediation has gained traction for its sustainable principles. Although, advancements in effectiveness are still needed to enable widespread application. This research has two major components. First, priming fungi could prove to be a useful tool to increase efficiency of white-rot fungi when used to bioremediate petroleum hydrocarbons contaminated soil. This study evaluated T. versicolor colonized in two substrates to test this theory. TPH was extracted from the soils using hexane shaking method, and measured on a CG-MS. The study results were not conclusive, and more research should be conducted to determine if priming white-rot fungi can increase the effectiveness of degradation of TPH in contaminated soils. Second, historical and unethical oil production in Ecuador has left an environmental and human health disaster. The goal of this study was to produce a high-level bioremediation plan that can be used and amended for site specific applications in Ecuador.

Pages