Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Ecological restoration of the Little Qualicum River Estuary: Analysis of short-term sediment deposition
Restoration of the Little Qualicum River Estuary has focused on re-establishing the Carex lyngbyei channel edge vegetation lost to grubbing by the overabundant resident Canada goose population. Short-term sediment deposition rates were measured using weekly deployments of sediment traps between June and July 2019 to investigate how restoration is facilitating sediment retention to rebuild the marsh platform. Deposition rates varied between 6.82-107.88 g/m2/week with traps deployed on the denuded mud flat areas collecting more sediments than inside the older exclosures. It had been expected that the exclosures with a greater density of sedges would retain more sediment. Spatial variation may be attributed to differences in sampling elevations. Restoring C. lyngbyei may not increase localized sediment deposition directly but does protect the continued supply of organic input from the seasonal senescence of C. lyngbyei. The organic input from aboveground biomass may have a larger contribution to marsh accretion than allochthonous sediments., sediment deposition, Carex lyngbyei, estuary, restoration, Canada goose
An ecological restoration plan for a weedy field at the University of British Columbia Okanagan
Grassland ecosystems are rare, in decline, and support a multitude of at-risk species in British Columbia. At the University of British Columbia Okanagan in Kelowna BC, a 3.3 ha site at the entrance of the campus is outlined as Okanagan grassland in campus design plans but currently lacks native bunchgrass communities. The goal of this restoration plan is to return grassland plant communities to the site despite the pervasiveness of noxious weeds. I characterised site conditions through soil and vegetation surveys. Restoration recommendations include managing noxious weeds through mowing, hand-pulling and some herbicide application. The site will be replanted with bunchgrass vegetation, two pockets of ponderosa forest, and two types of shrub communities. A walking path, signage, and two xeriscape gardens will also be included to control human use of the landscape. Long-term monitoring will be incorporated into classroom curricula to tie monitoring to learning opportunities., Grassland, exotic plants, Noxious weeds, urban restoration, restoration plan
Effects of Canada Goose (Branta canadensis) and Snow Goose (Chen caerulescens) herbivory on tidal marsh recession at the Westham Island Marsh
In the Fraser River Estuary of British Columbia, tidal marshes have been receding and converting into unvegetated mudflats since the 1980s. While there are many hypotheses for this recession, the effect of avian herbivory is poorly understood. This study assessed how Canada Goose (Branta canadensis) and Snow Goose (Chen caerulescens) herbivory affected cover of tidal marsh vegetation that was comprised mainly of three-square bulrush (Schoenoplectus pungens) in the Westham Island tidal marsh. I conducted two field-based exclosure experiments, marsh edge and mudflat, that used exclosure plots to reduce specific goose herbivory in a randomized block design. Each experiment consisted of four blocks each of which was comprised of four treatments: open to goose herbivory, excluded all goose herbivory, primarily excluded Canada Goose herbivory, or primarily excluded Snow Goose herbivory. The marsh edge experiment used exclosures centered on the vegetated edge of the marsh, while the mudflat experiment was conducted in the unvegetated mudflat and were transplanted with S. pungens. Based on results from July to October of 2020, percent cover of tidal marsh vegetation was about 20% lower in plots open to Canada Goose herbivory versus those that excluded geese. Snow Goose herbivory could not be accurately assessed as they arrived when S. pungens were dormant. Thus, deterring goose herbivory may be an important consideration for land managers in restoring tidal marshes. Additionally, I compared percent cover from drone-derived remote sensing to traditional ground-based visual estimates of percent cover of S. pungens in the tidal marsh. One per month, from July to October of 2020, I used a drone to take photos of the exclosures from the previous experiments, and used pixel counts to calculate the percent cover of S. pungens. I then used a t-test to compare the drone-derived percent cover to the ground-based estimates and found no significant difference (t = 0.58, p = 0.56). I then plotted a linear regression model and found a strong correspondence between both methods (R² = 0.99, p = 1.3e-139). So, remote sensing using drones appears to be an effective alternative to visual estimates of percent cover of tidal-marsh vegetation in the Westham island tidal marsh., Tidal marsh recession, Goose herbivory, Canada Goose, Snow Goose, Schoenoplectus pungens, Drones
Effects of logging-induced sediment loading on Chinook salmon rearing habitat in Tranquil Estuary, BC and implications for estuary restoration
Research on estuaries has increased in recent years, however, the effects of logging on estuaries and the effects of estuary habitat loss on Chinook salmon (Oncorhynchus tshawytscha) in the Pacific northwest is limited. To address habitat loss associated with logging, I used an extensive aerial photo record for Tranquil Creek estuary and an unlogged control to analyze changes in salt marsh area, elevation and volume, supplemented with a grain size distribution analysis. While I failed to find evidence of a difference between a logged and an unlogged estuary, some negative trends in salt marsh area and elevation observed over the observational period were indicative of changes that are unfavorable for juvenile Chinook salmon. Analytical methods presented here to assess changes in two remote coastal estuaries has contributed to the current knowledge on the effects of logging on estuarine ecosystems in coastal BC and provide tools for innovative estuary habitat restoration., aerial photograph analysis, Chinook salmon (Oncorhynchus tshawytscha), salt marsh, estuary restoration, logging, sediment
The effects of tree thinning and broadcast burning on the quality of ungulate winter range: a case study within a Southern Interior Forest in British Columbia
Food limitation on ungulate winter range (UWR) has been a suspected factor in the regional declines of Odocoileus hemionus (mule deer) in the Pacific Northwest. Accordingly, enhancing browse resources in this critical habitat is increasingly recommended. At a dry forest site in Southeast B.C. called Fiva Creek (IDF dm1), I investigated the effects of two commonly prescribed methods for enhancing browse production: tree thinning and prescribed burning. Treatments were implemented between 2005–2008 and included three levels of thinning (all burned) and control areas (uncut and unburned). The response variables I measured included browse cover, canopy closure, security cover, visibility, and pellet abundance. I also evaluated browsing pressure on the indicator plant, Saskatoon (Amelanchier alnifolia). Using linear mixed-effects ANOVA tests, I assessed how thinning (with follow-up burning) influenced forest and vegetation properties. There was no evidence of a treatment effect on browse production; however, browsing pressure was very high across the site (i.e., > 80% of A. alnifolia twigs showed evidence of browsing). Additionally, canopy cover was below recommended levels in all thinned treatments. My results suggested that restoration treatments actually diminished the quality of UWR at Fiva Creek. Further investigations are needed to develop effective UWR restoration methods., Mule deer, ungulate winter range, thinning, prescribed fire, restoration ecology
Exploring the relative effects of different wetland restoration sites on functional connectivity for the northern red-legged frog (Rana aurora)
Amphibian species are globally at risk, with a leading cause of decline attributed to habitat loss and fragmentation. The northern red-legged frog (NRLF) is one such species and listed as a Species of Special Concern by the Species at Risk Act. The Sunshine Coast Wildlife Project is creating new wetland habitat on the Sechelt Peninsula. In this research, I provide a tool to explore the relative effects on the functional connectivity of different potential restoration sites. A habitat suitability model (HSM) was created to describe the landscape in terms of conductance, or ease of movement for NRLF. Using this conductance map, I analysed the functional connectivity between wetlands by using Circuitscape, a software grounded in circuit theory. Three potential restoration options were compared against the existing landscape. Of the three options, one had a much greater effect in increasing the overall wetlands and its connectivity to the existing network of wetlands., Functional connectivity, wetland habitat restoration, northern red-legged frog (Rana aurora), circuit theory, Circuitscape, habitat suitability model (HSM)
Factors limiting the expansion of black-tailed prairie dog colonies at their northern extent
Prairie dogs (Cynomys ludovicianus) are considered a keystone species due to their ecological role in maintaining the prairies. In Canada, they are federally listed as a threatened species. This study was conducted to identify the limiting factors to the expansion of prairie dog colonies in Grasslands National Park, Saskatchewan. I tested different hypotheses to compare landforms, vegetation, and soil characteristics in three treatments: consistently occupied (Consistent), inconsistently occupied (Inconsistent), and never occupied (Buffer) by prairie dogs. I sampled four prairie dog colonies (blocks) from 17 July 2019 to 28 August 2019 using a randomized complete block design. I used ANOVA to test variables for significant differences among treatments. My results showed that hills, water channel, shrublands, grass cover, shrub cover and vegetation height classes (>30 cm) were significantly higher (p <0.05) in Buffer compared to Consistent and Inconsistent. Shrubs and tall vegetation should be mowed down to enhance the expansion of prairie dog colonies for restoring their population., restoration, prairie dogs, Cynomys ludovicianus, colony expansion, barriers, habitat use
Geochemical and biological response of an intertidal ecosystem to localized restoration efforts
Geochemical and biological attributes of three intertidal areas in the Squamish Estuary with different levels of disturbance (low, medium, and high) were assessed to determine short-­term ecosystem responses to localized restoration efforts conducted one year previously on a former log handing site. Sediment and macroinvertebrate variables were analyzed among sites to characterize the ecosystems response and provide insight on the nature and process of an assisted successional trajectory. Invertebrate composition and biomass were lowest on the site with the highest level of disturbance. The high disturbance site also contained the highest percentage of fine sand (0.0067 mm to 0.25 mm). This confirms that in the short term there are distinct site responses to disturbance and ameliorative restoration efforts – even in a highly dynamic estuarine environment. The medium site contained more invertebrates than the low disturbance site indicating that something other than localized disturbance is affecting the invertebrate community on the low site. All sites exhibited a less-­rich and less diverse invertebrate community than that of historical records (circa. 1970-­1980). Invertebrate community in the east delta today is more typical of estuarine environments with higher salinity levels -­ which indicates more widespread levels of disturbance throughout the Estuary is affecting the study sites. This study highlights the importance of considering temporal and spatial scales when setting restoration goals, objectives and creating monitoring plans. Additional monitoring of sediment, invertebrate, and other variables on restored and reference sites is recommended to characterize typical recolonization and reassembly attributes of restoring intertidal estuaries in coastal British Columbia. This would provide evidence and rigor in determining effective restoration techniques and management strategies for a critical and increasingly threatened ecosystem., Macroinvertebrates, Restoration, Sediment, Benthic ecology, Estuaries, Intertidal flats
Groundwater elevation and chemistry at Camosun Bog, British Columbia, and implications for bog restoration
A bog is a type of wetland with a high water table, acidic soil and is nutrient poor. Camosun Bog is the oldest bog in the Lower Mainland of British Columbia, and remained undisturbed until development of the surrounding residential neighborhood caused changes to its groundwater conditions, threatening its current persistence. The goal of this study is to provide an updated examination of Camosun Bog’s groundwater conditions and to discuss relevant bog restoration measures. Groundwater elevation and chemistry (pH, conductivity, nitrogen and phosphorus) were monitored for several months in 2019. Results indicate that current groundwater elevations are lower in Camosun Bog than they were thirty years ago, especially in the north and northeast regions. Locations in the north and center parts of the open bog experienced groundwater nitrogen enrichment and higher pH, indicating that raising the water table should be the main goal of restoration for Camosun Bog.
A historical marsh vegetation composition comparison between five Fraser River foreshore marshes
A full composition study of some key Fraser River foreshore marshes, Boundary Bay, Brunswick Point, Westham Island, Lulu Island, and Sea Island, had not been done in several decades, during which a large-scale marsh recession event occurred at two of the marshes. The vegetation composition is measured in this study with relation to soil water, soil pore water salinity, and elevation. The results in this study show a shift in the vegetation composition in some areas of the Lulu Island marsh, with the other marshes remaining relatively similar to historical data. The plant species’ tolerance to soil water, soil salinity, and elevation vary in each marsh, illustrating the need for individualized restoration plans for each marsh. Conserving and restoring these marshes is critical in light of the many changes in the Fraser River delta, including sea level rise, increased geese populations, altered sediment regimes, and urbanization., Fraser River, brackish marsh, salt marsh, vegetation composition, salinity, elevation
Identifying temporal trends and mechanisms for successful reforestation on former agricultural land
This study investigates the outcomes of restoration efforts completed on retired agricultural land in Southwest Ontario. Sites acquired by the Nature Conservancy of Canada were planted to kickstart succession to native deciduous forests, but the results of the plantings are mixed. Analysis of soil conditions indicated that low levels of soil organic carbon were correlated to low water content and high density unfavourable for plant growth. Analysis of remotely sensed imagery was done to assess and compare vegetation cover to reference conditions at Walpole Island First Nation. Analysis revealed that successful restoration was dependent on multiple soil characteristics, but conditions correlated to higher total organic carbon favoured greater vegetation cover. Remote sensing data revealed that succession towards tree canopy development was accelerated compared to passive restoration, and a shaded understory was established approximately 8-12 years following restoration. Future work can expand on succession and the effects of other restoration treatments., Soil, Reforestation, NDVI, Agriculture, Restoration, Secondary succession
The impacts of exotic Typha on benthic invertebrate communities in the South Arm of the Fraser River Estuary
In recent decades, the exotic cattail Typha angustifolia and its hybrid Typha x glauca have invaded the Fraser River estuary. The impacts from this invasion on benthic macroinvertebrate communities, however, are yet to be studied. Macroinvertebrates play important roles in food chains, trophic dynamics, and nutrient cycling and are potentially at risk from this invasion. In this study, I compared the benthic invertebrate communities between exotic cattail stands and native vegetation stands at 25 paired sites. Sediment cores were analyzed for invertebrate abundance, biomass, and Shannon Wiener diversity index, and it was found that biomass and abundance were lower in exotic cattail when compared to native vegetation, however, there was no difference in diversity. Given the proximity to side channels, tidal inundation time would be a logical explanation for the differences in the benthic communities; however, it was not found to be a significant predictor. Given the invasive nature of exotic cattail and the correlations that were found, cattail should be removed in restoration projects where possible., Fraser River, Typha x glauca, Estuary, Invasive species, Typha angustifolia

Pages