Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Plant facilitation effects as a potential restoration tool in riparian ecosystems in Southwestern British Columbia
This study began to investigate potential facilitative effects among shrub species in riparian ecosystems in southwestern British Columbia. I ran two concurrent studies. Six plots for each of four treatments were established at the Coquitlam River Wildlife Management Area. The first two treatments compared the survival, growth, flowering, and herbivory rates of planted twinberry seedlings in plots where the shrub layer was removed to plots where it was not. The other two treatments compared the survival, growth, leaf loss, flowering and herbivory rates of snowberry plants in plots where the salmonberry upper shrub layer was removed to those where it was not. No significant differences between the measured parameters in any of the treatments were found. These results are discussed in the context of the riparian forest ecosystem and current facilitation theory. The results are then used to inform an ecological restoration plan for the Suwa’lkh School Forest., Facilitation, Riparian forests, Native vegetation, Symphoricarpos albus, Lonicera involucrate, Rubus spectabilis, Ecological restoration
A prey-based approach to restoration
Forestry in British Columbia’s old-growth forests has reduced critical foraging and breeding habitat for the coastal northern goshawk (Accipiter gentilis laingi) and restricted population growth. Now at-risk, efforts to recover this subspecies have focused on establishing suitable habitat and a well-distributed population within the province. However, regional diets and associated dynamics are also critical to goshawk recovery and remain poorly understood. Including a synchronous predator-prey recovery approach to current plans can bridge these knowledge gaps. A new model and methods were developed to translate prey biological requirements into structural surrogate features that could be parameterized and ranked within GIS software. Applying these ranks to known goshawk territories in the South Coast allowed for the visualization and quantification of areas with subpar predicted prey abundances. This provided insight on links between prey and forest structure and can be used to direct future restoration and research decisions for coastal goshawk prey-based recovery.
Restoration of an urban creek water quality using sand and biochar filtration galleries
Stormwater runoff from parking lots often contains a variety of elements and compounds in different forms and concentrations that may pose risks to biota in receiving aquatic systems. Heavy metals including copper (Cu) and zinc (Zn), and polycyclic aromatic hydrocarbons (PAHs) are of particular concern in such runoff due to their prevalence, toxicity to aquatic organisms and persistence in the environment. The ability of a commercially available biochar to remove pollutants of concern through column treatments was assessed in this research. Factors including the pollutant’s concentration, total organic carbon (TOC), pH, and biochar particle size were considered. The biochar used in this study showed a significant heavy metals and PAH removal ability compared to sand, qualifying it as a potential substitute for sand in urban structural best management practices. Maximum percentage removal using biochar followed the order of naphthalene (NAP) > Zn > Cu. Regarding Cu and Zn removal, small biochar exhibited higher removal efficiency compared to medium biochar. In terms of NAP removal, both small and medium biochar exceeded sand with a five-fold percentage removal. However, biochar of different particle sizes had the same removal percentage., infiltration swale, biochar, parking lot stormwater, naphthalene, stormwater management, heavy metals, PAH
Restoration of salmonid spawning habitat in the Upper Serpentine River
Over the past half century, urbanization has caused drastic changes to the hydrology and geomorphology of streams and rivers. The Serpentine River is a low-elevation, rain-dominant river located in the City of Surrey, British Columbia. Over the years, urbanization of the watershed, particularly in the upper reaches, has degraded what once was high quality spawning habitat for five salmonid species. The current project is an evaluation of previous restoration efforts at seven study sites and a restoration plan to effectively increase spawning habitat in the Upper Serpentine River. Grain size analysis of the study sites found up to 57% fine sediment in the subsurface particles, attributing to siltation rates of 1.2-1.6 kg/m2/day. Erodible grain sizes at the study sites ranged from 29-164 mm, which mostly exceeded the median size of spawning gravel. These results were verified with a tracer rock study, which together concluded that instream structures were required to reduce tractive forces and increase gravel retention. Newbury weirs, or constructed riffles, were proposed as treatments because their hydraulic characteristics increase flow resistance, promote gravel retention, and create intergravel flows. Newbury weirs involve large diameter rocks spanning across the entire stream, causing accumulation of gravel on the upstream side and pool formation downstream side. Substrate scoured at the pool will be deposited at the tail end of the pool, creating spawning habitat in accelerating and downwelling waters. Bank stabilization using dense live staking with a protective rock toe key was prescribed to reduce further channel incision and siltation. In the longterm, watershed-level priorities including passage through the Serpentine sea dam, monitoring for urban contaminants, and installation of green infrastructure was recommended. The proposed treatments are relatively inexpensive, and if successful, will reduce repeat addition of spawning gravel and increase salmonid production in the Serpentine River. However, the value of the current project extends beyond fish productivity estimates. Monitoring data from restoration works can be used to inform future urban stream restoration projects and contribute to the continual improvement of restoration techniques. The effects of restoration on not only sediment form (ie. gravel depth and size) but also processes (ie. sediment scour and fill) should be investigated in the field to verify theoretical models.
Restoration of the upper Salmon River watershed: projected effects of diversion removal on salmonid abundance
The Salmon River, located within the Laich-kwil-tach First Nations’ traditional territory on Vancouver Island, supports a diverse community of anadromous and resident salmonids despite having cumulative effects from historical resource development (Burt 2010a). Currently, BC Hydro’s diversion dam and transfer canal on the Salmon River provides water for hydroelectric power production in Campbell River, but restricts the upstream and downstream movement of native salmonids (Anderson 2009, BC Hydro 2012). This report addresses removing the Salmon River diversion and providing coho salmon (Oncorhynchus kisutch) and steelhead trout (O. mykiss) unrestricted access into the upper Salmon River watershed. This restoration project will mitigate projected effects of climate change on freshwater life stages of the Salmon River salmonids by addressing increasing stream temperatures and seasonal low flows. Completing this restoration project is the first step in recovering the salmonid productivity of the upper Salmon River., salmonid productivity, Salmon River, coho salmon, steelhead trout, ecological restoration, dam removal
A restoration strategy to avert the projected ecological, social and economic risks of Lost Lagoon in Stanley Park, British Columbia
The coastal saltmarsh that once made up Lost Lagoon was isolated into a freshwater impoundment to enable the construction of the Stanley Park Causeway in 1916. Water chemistry, water nutrients, and subsurface sediment were collected in August to October 2017, and it was concluded that Lost Lagoon is experiencing, low DO (average 6 mg/L), high salinity (0.9 ppt), high nutrient loading (TP 0.1 mg/L and TN 0.9 mg/L) and has elevated heavy metals (Cd, Cu, Ni, Pb, and Zn). A general biotic inventory was conducted and results indicated a lack of native species diversity and presence of invasive species, for both flora and fauna. Projected future conditions concluded that Lost Lagoon is prone to stratification and higher temperatures, which is expected to further water impairment including, increases in NH3 and toxic algae blooms. To mitigate this trajectory, a systematic restoration plan was developed to reintroduce tidal flushing into Lost Lagoon from Coal Harbour’s western basin, thereby restoring the degraded ecosystem into a diverse coastal saltmarsh. Hydrogemorphology and flow rates were estimated and as a result a 1.3-m wide water channel was recommended. A planting and long-term monitoring plan that will aid in revitalization of a coastal saltmarsh was developed, alongside a preliminary project budget and schedule. The project feasibility and public response were discussed as constraints, with emphasis on furthering this proposed restoration plan with professional engineering, and First Nations and public consultation., ecological projections, restoration, urban wetland, saltmarsh, intertidal ecosystems
Restoring hydrological connectivity in the Guichon Creek watershed through wetland creation
Urbanization of areas alters the natural hydrology of the land through the creation of impervious surfaces, removal of vegetation, and construction of storm sewer systems. These alterations impact physical processes and the biological communities of our waterways through the introduction of pollutants, creation of uncharacteristic hydrological regimes, and habitat loss and fragmentation. Integration of natural areas in our built environments will mitigate some of these effects and reduce the degradation of streams in urbanized watersheds. Guichon Creek flows through an urbanized environment, which includes the British Columbia Institute of Technology (BCIT) Burnaby campus. A tributary flows into Guichon Creek at the south end of campus and the majority of its flow is from a stormwater sewer which receives runoff from the residential area east of campus. The tributary is approximately 150 metres and runs between a community garden and a small gravel parking lot before entering Guichon Creek. This project proposes restoration of a 2,000 m2 parcel of land between Guichon Creek and the tributary. Restoration activities involve removal of an existing parking lot, management of invasive hybrid Japanese knotweed (Fallopia x bohemica) and Himalayan blackberry (Rubus armeniacus), creation of an off channel wetland, and addition of natural in-stream structures to the tributary. Wetlands provide important hydrological and ecological functions that will contribute to the restoration efforts on Guichon Creek. This wetland will improve hydrological functions of the Guichon Creek floodplain through increased groundwater infiltration, creation of a storage area, and pollutant filtration. Improving these functions is also an important component of making stream ecosystems more resilient to climate change. The wetland will also provide ecological benefits such as improved water quality and creation of amphibian habitat. This project focuses on the creation of habitat for northern red-legged frog (Rana aurora) and the Pacific chorus frog (Psuedacris regilla). Another important component of restoration in an urban environment is creating a connection between people and the environment. Restoration of this space provides opportunities for public involvement and environmental education and awareness. This creates a forum to discuss the effects of urbanization on streams and show people where the runoff from their neighbourhood ends up. Forming that connection between people and their environment is an important step to creating interest and involvement in environmental issues.
The scale of ecological restoration: restoring steelhead habitat in the Oktwanch Watershed, Vancouver Island, B.C.
Forestry practices are thought to be the major cause of degraded salmonid habitat and declining steelhead populations in the Oktwanch River on Vancouver Island. Large woody debris installations and channel modifications were completed in Reach 1 of the Oktwanch River and adjacent side channels in 2001 to provide spawning and rearing habitat for multiple salmonid species and prevent further degradation, but were ultimately unsuccessful. This study investigated if watershed-scale restoration, rather than reach-scale, is necessary to restore this habitat for steelhead in the Oktwanch River indefinitely. This was achieved through an assessment of fish habitat in Reach 1 of the Oktwanch River and adjacent side channels and spatial analysis of the Oktwanch watershed using Landsat historical aerial imagery and i-Tree Canopy. The findings from this study suggest watershed-scale changes to forestry practices are required to restore steelhead populations in the Oktwanch River., forestry practices, watershed-scale restoration, reach-scale, woody debris installations, channel modifications
Simplified structure or fewer arthropods to eat?
In agricultural landscapes, hedgerows provide critical habitat for songbirds. Himalayan Blackberry (Rubus armeniacus; HBB) is a widespread invasive species in the Pacific Northwest that has been linked to lower breeding songbird diversity. My study explored two possible explanatory mechanisms: educed structural complexity and lower arthropod abundance as a food source. I conducted avian point counts in 51 hedgerow segments at two locations in the Lower Mainland of British Columbia. In these segments, I quantified vegetation structure using a Foliage Height Diversity (FHD) metric derived from LiDAR data. I sampled arthropod abundance on the foliage of woody understory vegetation. I used multiple regression to identify best fit generalized linear models. Songbird diversity decreased with HBB % cover and increased with FHD. However, arthropod abundance was unrelated to bird metrics, and similar between HBB and other native shrubs. This suggests that hedgerows should be managed to control HBB and maximize vegetation structure., songbird diversity, agricultural landscapes, Himalayan Blackberry, hedgerows, arthropods, LiDAR
Structural influence of old field on breeding summer songbirds, and overwintering raptor communities
Old field is a unnatural habitat that usually occurs as a result of agricultural land abandonment and is the product of early-stage natural succession on a previously managed field. In an agricultural setting with monoculture crops, old fields provide more vegetative complexity through ground cover diversity and shrubs and hedgerows. In Delta, British Columbia, several old-field sites are managed for wildlife and provide nesting habitat for songbirds over the summer, as well as foraging habitat for overwintering raptors during fall and winter months. I surveyed two old-field sites near Boundary Bay, and two field sites at the Vancouver Landfill to compare the influence of old-field vegetation on different bird communities and improve understanding on species using the landfill. I conducted fixed-radius point counts for songbirds, and standing counts for raptors. Comparing replicate field types (n=2) I found that overall diversity of songbirds was higher in old field, and also associated with structural features like shrubs and trees, while abundances of Savannah Sparrows (Passerculus sandwichensis) decreased with proximity to shrubs and trees. My results support the conclusion that installing structural vegetation features at the landfill would maximize breeding songbird diversity. I also found the landfill to support higher diversity of wintering raptor species, but old field supported consistently higher abundances. This suggests that the landfill is currently functioning as lower quality wintering habitat, and that different management techniques should be considered.
Sturgeon Bank marsh recession: A preliminary investigation into the use of large woody debris as a tool for restoring a degraded foreshore marsh
Large woody debris removal has been ongoing in the Fraser River Delta since the late 1800’s. I investigated how offshore winds and the absence of large wood may have contributed to the recession of the Sturgeon Bank Marsh. I suggest large wood increases marshland resilience and promotes new marsh establishment by attenuating wave energy, decreasing sediment mobilization, deterring herbivory, and promoting the establishment of vegetated islands from which the marsh can expand. I analyzed historical wind data for patterns in offshore wind duration and installed several pieces of large wood onto the tidal flats of the Sturgeon Bank. I developed a technique for anchoring wood in the intertidal and give my recommendations for further development. Finally, I conclude the recession of the Sturgeon Bank Marsh was the result of multiple interacting stressors and coin the term keystone structural element to describe the function of large wood within a foreshore marsh., large woody debris, keystone structural element, marsh recession, ecological restoration, wave sheltering, coastal marsh
Testing primed white rot fungi for bioremediation of petroleum hydrocarbon contaminated soil & bioremediation options plan for Napo concession area in Ecuador.
Bioremediation has gained traction for its sustainable principles. Although, advancements in effectiveness are still needed to enable widespread application. This research has two major components. First, priming fungi could prove to be a useful tool to increase efficiency of white-rot fungi when used to bioremediate petroleum hydrocarbons contaminated soil. This study evaluated T. versicolor colonized in two substrates to test this theory. TPH was extracted from the soils using hexane shaking method, and measured on a CG-MS. The study results were not conclusive, and more research should be conducted to determine if priming white-rot fungi can increase the effectiveness of degradation of TPH in contaminated soils. Second, historical and unethical oil production in Ecuador has left an environmental and human health disaster. The goal of this study was to produce a high-level bioremediation plan that can be used and amended for site specific applications in Ecuador.

Pages