Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Investigating the role of elevated salinity in the recession of a large brackish marsh in the Fraser River estuary
At least 160 ha of the Sturgeon Bank low marsh in the Fraser River delta died off between 1989 and 2011. Humans have heavily modified the Fraser River estuary since the late 1800’s, including installing a series of jetties throughout the leading edge of the delta to train the course of the river. I established a reciprocal transplant experiment to determine the role of elevated salinity in the marsh recession and generate information needed to eventually revegetate areas of receded marsh as part of an intergovernmental collaboration to investigate the causes of this marsh recession. I propose specific actions to better monitor, maintain, and restore the Fraser River delta foreshore brackish marshes in response to ongoing ecological degradation of the estuary. The predicted effects of climate change and sea-level rise may cause us to rethink options for restoring the Sturgeon Bank marsh., Restoration, Fraser River, Schoenoplectus pungens, Reciprocal transplant experiment, Marsh recession, Brackish marsh
Mapping floodplain fish habitat in the heart of the Fraser River and restoration options for impacted attributes on selected large mid-channel islands
The purpose of this project is to develop an ecological restoration plan for degraded habitats on mid-channel islands in the lower Fraser River. The study focuses on Herrling, Carey, and Strawberry islands, large mid-channel islands located in the gravel reach between Mission and Hope, British Columbia. These islands are known to be critical off-channel rearing habitat for many fish species including the threatened White Sturgeon (Acipenser transmontanus) and interior and lower Fraser watershed Chinook Salmon (Oncorhynchus tshawytscha) populations. These islands are also home to many riparian plant and animal species. The flood-pulse concept (FPC) states that seasonal fluctuations in water levels for streams such as the Fraser River contribute substantially to the ecological function of the floodplain ecosystem where this phenomenon occurs. This often results in improved growth and survival rates for fish species that rely on a laterally-moving littoral zone of inundation. This phenomenon is thought by many to be the key to a properly functioning ecosystem in the lower Fraser River. Using a Digital Elevation Model (DEM) for the Fraser River between Hope and Mission, British Columbia, freshet flows (high water elevations) are presented to define the spatial extent of over-bank watering of Strawberry, Carey and Herrling islands. This over-bank watering provides lateral connectivity to floodplain islands. Based on extensive sampling in other studies, this lateral movement results in the creation of high-quality juvenile fish rearing habitat. A restoration plan is presented for those areas of Strawberry, Carey and Herrling islands degraded by recent land clearing for agriculture where they overlap sections defined as fish habitat from the spatial analysis., gravel reach, mid-channel islands, floodplain fish habitat, flood pulse concept, juvenile Chinook Salmon, lower Fraser River, White Sturgeon
Phytoremediation of contaminated soils
Phytoremediation poses an ecologically friendly and cost-effective alternative to other remediation methods such as chemical or thermal treatment. However, in contaminated sites such as retired oil wells and brine spills, it is common to have a co-contamination of salt and polyaromatic hydrocarbons (PAHs). The co-contamination of salt and PAHs may decrease the rate and effectiveness of bioremediation. Here we investigated the effect soil salinity has on the rate of phytoremediation, plant survivability and biomass. A 90-day greenhouse study was performed, growing alfalfa (Medicago sativa L.) in soils treated with varying salt (NaCl) concentrations in the presence of pyrene and benzo[a]pyrene. No significant differences were observed in the presence or absence of PAHs. Salt treatments has significant affects on plant biomass, nodulation, and successful germination., Bioremediation, Polyaromatic hydrocarbons, Alfalfa, Salt, Phytoremediation
Plant facilitation effects as a potential restoration tool in riparian ecosystems in Southwestern British Columbia
This study began to investigate potential facilitative effects among shrub species in riparian ecosystems in southwestern British Columbia. I ran two concurrent studies. Six plots for each of four treatments were established at the Coquitlam River Wildlife Management Area. The first two treatments compared the survival, growth, flowering, and herbivory rates of planted twinberry seedlings in plots where the shrub layer was removed to plots where it was not. The other two treatments compared the survival, growth, leaf loss, flowering and herbivory rates of snowberry plants in plots where the salmonberry upper shrub layer was removed to those where it was not. No significant differences between the measured parameters in any of the treatments were found. These results are discussed in the context of the riparian forest ecosystem and current facilitation theory. The results are then used to inform an ecological restoration plan for the Suwa’lkh School Forest., Facilitation, Riparian forests, Native vegetation, Symphoricarpos albus, Lonicera involucrate, Rubus spectabilis, Ecological restoration
Restoration of old forest characteristics in a 1957 spacing trial in the Malcolm Knapp Research Forest, British Columbia
Forest managers are interested in determining how stands that have been logged might be managed to restore features characteristic of forests in later-stages of development. Incorporating forest restoration into forest management enables the use of forest-management skills, such as silviculture and regeneration techniques, to manage individual stands for multiple objectives. Therefore, I performed a comparative analysis of large trees, very-large trees, large snags, very-large snags, and large CWD among three stand types (i.e., 60-yr-managed, 140-yr-natural, and 500-yr-natural stands). The 140-yr-natural and 500-yr-natural stands were used as reference conditions to guide the restoration of a 59-yr-managed spacing trial. All attributes differed among stand-types; however, large snags were the most similar attribute between 140-yr-natural and 500-yr-natural stands. Large trees were the fastest attribute to recover in 60-yr-managed stands, however mean values among stand-types still differed. This study highlights the potential of restoring old-natural attributes in younger-managed stands to increase ecological resiliency., forest, natural, managed, prescription, restoration, old-natural attributes
Restoration of the upper Salmon River watershed: projected effects of diversion removal on salmonid abundance
The Salmon River, located within the Laich-kwil-tach First Nations’ traditional territory on Vancouver Island, supports a diverse community of anadromous and resident salmonids despite having cumulative effects from historical resource development (Burt 2010a). Currently, BC Hydro’s diversion dam and transfer canal on the Salmon River provides water for hydroelectric power production in Campbell River, but restricts the upstream and downstream movement of native salmonids (Anderson 2009, BC Hydro 2012). This report addresses removing the Salmon River diversion and providing coho salmon (Oncorhynchus kisutch) and steelhead trout (O. mykiss) unrestricted access into the upper Salmon River watershed. This restoration project will mitigate projected effects of climate change on freshwater life stages of the Salmon River salmonids by addressing increasing stream temperatures and seasonal low flows. Completing this restoration project is the first step in recovering the salmonid productivity of the upper Salmon River., salmonid productivity, Salmon River, coho salmon, steelhead trout, ecological restoration, dam removal
Restoration options for Nicomekl River anadromous salmonids – Elgin Road Bridge Sea Dam
The Nicomekl River flows through historic Katzie First Nation territory in Surrey, British Columbia. The river provides salmon the linkage between their upland spawning and rearing grounds and the Pacific Ocean where they mature. Anthropogenic development has reduced habitat connectivity along the river, denuded the banks of vegetation, removed instream complexity, constrained the channel, regulated flow, and altered the water chemistry. A tidally controlled 7-gate sea dam is the source of the critical connectivity bottleneck on the river. It impairs free longitudinal migrations of adult and juvenile salmonids and increases adult and juvenile predation. Through literature review and site assessment, this study suggests a suite of restoration treatments to restore connectivity and site-based habitat attributes to the Nicomekl River. The study then considers management options in light of climate change, sea level rise, and how to generate public involvement to support the proposed treatments. The study concludes that urban stream restoration faces challenges as it must find a balance between the environmental and social needs of the Nicomekl River beyond simply repairing ecosystem damage and degradation., riparian restoration, salmonids, migration bottlenecks: connectivity
Restoring a culturally eutrophic shallow lake: Case study on Quamichan Lake in North Cowichan, British Columbia
Quamichan Lake is a culturally eutrophic shallow lake located in North Cowichan on Vancouver Island in British Columbia. My research project examined the current trophic status and water quality of Quamichan Lake and investigated a number of watershed and in-lake restoration methods to return the lake back to mesotrophic (nutrient rich) conditions. Based on the data collected, Quamichan Lake is currently in a hypertrophic state caused by excess phosphorus inputs that leads to Cyanophyte phytoplankton species (cyanobacteria) to dominate during the summer. Eutrophication is both an environmental and human health issue as cyanobacteria algal blooms can disrupt the lake ecology and are toxic to most mammals. The goal of my research was to provide the Municipality of North Cowichan and Vancouver Island Health Authority with a comprehensive restoration plan to contribute to the restoration of Quamichan Lake and other lakes in southern Vancouver Island that are experiencing cultural eutrophication., © Kathleen E Moore, 2019. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Eutrophication, Limnology, Watershed Management, Cyanobacteria, Restoration
A riparian restoration plan for a construction site on the Brunette River
Urbanization has altered riparian ecosystems, resulting in the decline of species that depend on them. The Brunette River in the Lower Mainland of British Columbia is no exception; though it currently supports a range of biotas, many of them are at-risk. These impacts are further accentuated by the expansion of the Trans Mountain Pipeline, which will result in the removal of a portion of critical habitat for the endangered Nooksack Dace. In light of the cultural significance of the basin to Kwikwetlem First Nations, the goal of this plan is to improve conditions at the project site post-construction through the establishment of culturally and ecologically important species and the addition of habitat features. I completed soil, vegetation, and water quality surveys to inform my prescriptions. Recommendations include the management of non-native species using manual and mechanical control methods and the planting of a native riparian community that fits within the confines of human infrastructure. A robust monitoring plan is also provided., critical habitat, exotic species, First Nations, restoration, riparian, urbanization
Simplified structure or fewer arthropods to eat?
In agricultural landscapes, hedgerows provide critical habitat for songbirds. Himalayan Blackberry (Rubus armeniacus; HBB) is a widespread invasive species in the Pacific Northwest that has been linked to lower breeding songbird diversity. My study explored two possible explanatory mechanisms: educed structural complexity and lower arthropod abundance as a food source. I conducted avian point counts in 51 hedgerow segments at two locations in the Lower Mainland of British Columbia. In these segments, I quantified vegetation structure using a Foliage Height Diversity (FHD) metric derived from LiDAR data. I sampled arthropod abundance on the foliage of woody understory vegetation. I used multiple regression to identify best fit generalized linear models. Songbird diversity decreased with HBB % cover and increased with FHD. However, arthropod abundance was unrelated to bird metrics, and similar between HBB and other native shrubs. This suggests that hedgerows should be managed to control HBB and maximize vegetation structure., songbird diversity, agricultural landscapes, Himalayan Blackberry, hedgerows, arthropods, LiDAR
Sturgeon Bank marsh recession: A preliminary investigation into the use of large woody debris as a tool for restoring a degraded foreshore marsh
Large woody debris removal has been ongoing in the Fraser River Delta since the late 1800’s. I investigated how offshore winds and the absence of large wood may have contributed to the recession of the Sturgeon Bank Marsh. I suggest large wood increases marshland resilience and promotes new marsh establishment by attenuating wave energy, decreasing sediment mobilization, deterring herbivory, and promoting the establishment of vegetated islands from which the marsh can expand. I analyzed historical wind data for patterns in offshore wind duration and installed several pieces of large wood onto the tidal flats of the Sturgeon Bank. I developed a technique for anchoring wood in the intertidal and give my recommendations for further development. Finally, I conclude the recession of the Sturgeon Bank Marsh was the result of multiple interacting stressors and coin the term keystone structural element to describe the function of large wood within a foreshore marsh., large woody debris, keystone structural element, marsh recession, ecological restoration, wave sheltering, coastal marsh
Throwing shade
Reed canarygrass (Phalaris arundinacea) is an invasive grass common in wetlands and riparian areas throughout the Pacific Northwest. It is highly adaptable and resistant to many control methods, but is vulnerable to shading. We sought to control reed canarygrass by establishing desirable native shrubs to overtop and shade it. Plots were rototilled, mulched, live-staked, and monitored for 2-6 growing seasons. We tested 1) effective planting densities by live-staking hardhack (Spiraea douglasii) at 50, 30, and 15 cm spacing, 2) relative species performance by planting hardhack, red-osier dogwood (Cornus sericea), and thimbleberry (Rubus parviflorus), all at 30 cm densities, and 3) alternative site preparation methods by using cardboard mulch or excavating the top 20 cm of topsoil. Higher planting density significantly reduced reed canarygrass cover and biomass. Both hardhack and red-osier dogwood successfully suppressed reed canarygrass, though thimbleberry did not. No significant differences between site preparation methods were observed., reed canarygrass, Phalaris arundinacea, invasive species management, live staking, planting density, Spiraea douglasii

Pages