Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

A mitigation plan for salmonid spawning habitat in the Lower Seymour River, North Vancouver
Salmonids are a very important species to British Columbia and the Pacific Northwest. They are an icon of British Columbia’s heritage and they hold many ecological, economical, recreational, and cultural values. Unfortunately, Pacific salmonid populations have been declining over the last century due many reasons including degradation of freshwater habitat used for spawning and rearing. This degradation is largely due to expanding urbanization and the installation of dams for flood control, hydropower and water supply. The Seymour River is a mountainous river located in North Vancouver. Over the past century, this river has been subjected to many anthropogenic activities that have cumulatively altered the natural flow and sediment regime. The Seymour Falls Dam, located in the middle of the watershed, intercepts gravel transport from the upper watershed into the lower reaches. This combined with the intense channelization within the lower 4 km of the river, which has created conditions incapable of gravel deposition and retention, has led the lower reaches to become gravel deficient. This gravel deficiency has caused the degradation of traditional spawning grounds of chum (Oncorhynchus keta), and pink salmon (Oncorhynchus gorbuscha). This study aims to: 1) determine if there is a gravel deficiency for chum and pink salmon spawning in the lower 1.5 km reaches and, 2) provide recommended mitigative treatments of gravel addition to increase suitable spawning area, and therefore increase salmon productivity of the Seymour River. A site assessment was conducted on the lower 1.5 km of the Seymour River and included sampling of the five key parameters that define spawning habitat (i.e., water depth, velocity, dissolved oxygen, water temperature and substrate). A particular focus was given on analysing the substrate as it was expected to be deficient for spawning due to the predetermined conditions in the watershed such as the dam and the channelization. Results of the site assessment confirmed that substrate is the limiting factor for chum and pink salmon spawning in this area as the bed surface is composed of large cobbles and boulders too large for these specific species to move to dig a redd. Therefore, a xi mitigation plan of gravel addition is proposed to increase spawning habitat and conserve these salmon runs. Two gravel placement sites were selected between Mt. Seymour Parkway and Dollarton Bridge. A gravel mobility analysis determined that suitable-sized gravel will not be deposited or retained naturally on the channel bed due to the slope and water depth at high flood events. Therefore, gravel catchment structures are proposed to dissipate energy, thereby promoting deposition and reducing scouring. Each site contains a different design tailored to the specific characteristics of that reach. To retain gravel, spurs composed of the surface cobbles and boulders are proposed along with imbedded gravel pads composing of suitably sized gravel brought in from a local source. In total these two sites could provide about 1,925 m2 of additional spawning habitat which could support 209-836 pairs of chum or 3,208 pairs of pink salmon. Through long-term monitoring, this project in the Seymour River could provide strategies of gravel placement in large, urbanized, gravel-deficient rivers, in which current research is limited. Many rivers in North Vancouver (i.e., Capilano River, Lynn Creek, McKay Creek and Mosquito Creek) may be experiencing a gravel deficit similar to the Seymour River, and the strategies outlined in this project could be adapted to the specific conditions of those rivers. The cumulative effect of adding spawning gravel in each river within the Burrard Inlet, as well as elsewhere in the Pacific Northwest, could reduce stress in their freshwater phase and aid in rebuilding salmon populations from their precipitous decline in which they are on currently on track for. The strategies provided will also become important as more rivers become sediment deprived due to the construction of hydropower dams in response to a change from fossil fuels to renewable energies as climate change continues. The need for more innovative habitat mitigation strategies will be necessary to keep salmon from becoming a relic of the past.
Phytoremediation of contaminated soils
Phytoremediation poses an ecologically friendly and cost-effective alternative to other remediation methods such as chemical or thermal treatment. However, in contaminated sites such as retired oil wells and brine spills, it is common to have a co-contamination of salt and polyaromatic hydrocarbons (PAHs). The co-contamination of salt and PAHs may decrease the rate and effectiveness of bioremediation. Here we investigated the effect soil salinity has on the rate of phytoremediation, plant survivability and biomass. A 90-day greenhouse study was performed, growing alfalfa (Medicago sativa L.) in soils treated with varying salt (NaCl) concentrations in the presence of pyrene and benzo[a]pyrene. No significant differences were observed in the presence or absence of PAHs. Salt treatments has significant affects on plant biomass, nodulation, and successful germination., Bioremediation, Polyaromatic hydrocarbons, Alfalfa, Salt, Phytoremediation
Plant facilitation effects as a potential restoration tool in riparian ecosystems in Southwestern British Columbia
This study began to investigate potential facilitative effects among shrub species in riparian ecosystems in southwestern British Columbia. I ran two concurrent studies. Six plots for each of four treatments were established at the Coquitlam River Wildlife Management Area. The first two treatments compared the survival, growth, flowering, and herbivory rates of planted twinberry seedlings in plots where the shrub layer was removed to plots where it was not. The other two treatments compared the survival, growth, leaf loss, flowering and herbivory rates of snowberry plants in plots where the salmonberry upper shrub layer was removed to those where it was not. No significant differences between the measured parameters in any of the treatments were found. These results are discussed in the context of the riparian forest ecosystem and current facilitation theory. The results are then used to inform an ecological restoration plan for the Suwa’lkh School Forest., Facilitation, Riparian forests, Native vegetation, Symphoricarpos albus, Lonicera involucrate, Rubus spectabilis, Ecological restoration
Restoration of old forest characteristics in a 1957 spacing trial in the Malcolm Knapp Research Forest, British Columbia
Forest managers are interested in determining how stands that have been logged might be managed to restore features characteristic of forests in later-stages of development. Incorporating forest restoration into forest management enables the use of forest-management skills, such as silviculture and regeneration techniques, to manage individual stands for multiple objectives. Therefore, I performed a comparative analysis of large trees, very-large trees, large snags, very-large snags, and large CWD among three stand types (i.e., 60-yr-managed, 140-yr-natural, and 500-yr-natural stands). The 140-yr-natural and 500-yr-natural stands were used as reference conditions to guide the restoration of a 59-yr-managed spacing trial. All attributes differed among stand-types; however, large snags were the most similar attribute between 140-yr-natural and 500-yr-natural stands. Large trees were the fastest attribute to recover in 60-yr-managed stands, however mean values among stand-types still differed. This study highlights the potential of restoring old-natural attributes in younger-managed stands to increase ecological resiliency., forest, natural, managed, prescription, restoration, old-natural attributes
Restoration options for Nicomekl River anadromous salmonids – Elgin Road Bridge Sea Dam
The Nicomekl River flows through historic Katzie First Nation territory in Surrey, British Columbia. The river provides salmon the linkage between their upland spawning and rearing grounds and the Pacific Ocean where they mature. Anthropogenic development has reduced habitat connectivity along the river, denuded the banks of vegetation, removed instream complexity, constrained the channel, regulated flow, and altered the water chemistry. A tidally controlled 7-gate sea dam is the source of the critical connectivity bottleneck on the river. It impairs free longitudinal migrations of adult and juvenile salmonids and increases adult and juvenile predation. Through literature review and site assessment, this study suggests a suite of restoration treatments to restore connectivity and site-based habitat attributes to the Nicomekl River. The study then considers management options in light of climate change, sea level rise, and how to generate public involvement to support the proposed treatments. The study concludes that urban stream restoration faces challenges as it must find a balance between the environmental and social needs of the Nicomekl River beyond simply repairing ecosystem damage and degradation., riparian restoration, salmonids, migration bottlenecks: connectivity
A restoration strategy to avert the projected ecological, social and economic risks of Lost Lagoon in Stanley Park, British Columbia
The coastal saltmarsh that once made up Lost Lagoon was isolated into a freshwater impoundment to enable the construction of the Stanley Park Causeway in 1916. Water chemistry, water nutrients, and subsurface sediment were collected in August to October 2017, and it was concluded that Lost Lagoon is experiencing, low DO (average 6 mg/L), high salinity (0.9 ppt), high nutrient loading (TP 0.1 mg/L and TN 0.9 mg/L) and has elevated heavy metals (Cd, Cu, Ni, Pb, and Zn). A general biotic inventory was conducted and results indicated a lack of native species diversity and presence of invasive species, for both flora and fauna. Projected future conditions concluded that Lost Lagoon is prone to stratification and higher temperatures, which is expected to further water impairment including, increases in NH3 and toxic algae blooms. To mitigate this trajectory, a systematic restoration plan was developed to reintroduce tidal flushing into Lost Lagoon from Coal Harbour’s western basin, thereby restoring the degraded ecosystem into a diverse coastal saltmarsh. Hydrogemorphology and flow rates were estimated and as a result a 1.3-m wide water channel was recommended. A planting and long-term monitoring plan that will aid in revitalization of a coastal saltmarsh was developed, alongside a preliminary project budget and schedule. The project feasibility and public response were discussed as constraints, with emphasis on furthering this proposed restoration plan with professional engineering, and First Nations and public consultation., ecological projections, restoration, urban wetland, saltmarsh, intertidal ecosystems
Restoring a culturally eutrophic shallow lake: Case study on Quamichan Lake in North Cowichan, British Columbia
Quamichan Lake is a culturally eutrophic shallow lake located in North Cowichan on Vancouver Island in British Columbia. My research project examined the current trophic status and water quality of Quamichan Lake and investigated a number of watershed and in-lake restoration methods to return the lake back to mesotrophic (nutrient rich) conditions. Based on the data collected, Quamichan Lake is currently in a hypertrophic state caused by excess phosphorus inputs that leads to Cyanophyte phytoplankton species (cyanobacteria) to dominate during the summer. Eutrophication is both an environmental and human health issue as cyanobacteria algal blooms can disrupt the lake ecology and are toxic to most mammals. The goal of my research was to provide the Municipality of North Cowichan and Vancouver Island Health Authority with a comprehensive restoration plan to contribute to the restoration of Quamichan Lake and other lakes in southern Vancouver Island that are experiencing cultural eutrophication., © Kathleen E Moore, 2019. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Eutrophication, Limnology, Watershed Management, Cyanobacteria, Restoration
Restoring hydrological connectivity in the Guichon Creek watershed through wetland creation
Urbanization of areas alters the natural hydrology of the land through the creation of impervious surfaces, removal of vegetation, and construction of storm sewer systems. These alterations impact physical processes and the biological communities of our waterways through the introduction of pollutants, creation of uncharacteristic hydrological regimes, and habitat loss and fragmentation. Integration of natural areas in our built environments will mitigate some of these effects and reduce the degradation of streams in urbanized watersheds. Guichon Creek flows through an urbanized environment, which includes the British Columbia Institute of Technology (BCIT) Burnaby campus. A tributary flows into Guichon Creek at the south end of campus and the majority of its flow is from a stormwater sewer which receives runoff from the residential area east of campus. The tributary is approximately 150 metres and runs between a community garden and a small gravel parking lot before entering Guichon Creek. This project proposes restoration of a 2,000 m2 parcel of land between Guichon Creek and the tributary. Restoration activities involve removal of an existing parking lot, management of invasive hybrid Japanese knotweed (Fallopia x bohemica) and Himalayan blackberry (Rubus armeniacus), creation of an off channel wetland, and addition of natural in-stream structures to the tributary. Wetlands provide important hydrological and ecological functions that will contribute to the restoration efforts on Guichon Creek. This wetland will improve hydrological functions of the Guichon Creek floodplain through increased groundwater infiltration, creation of a storage area, and pollutant filtration. Improving these functions is also an important component of making stream ecosystems more resilient to climate change. The wetland will also provide ecological benefits such as improved water quality and creation of amphibian habitat. This project focuses on the creation of habitat for northern red-legged frog (Rana aurora) and the Pacific chorus frog (Psuedacris regilla). Another important component of restoration in an urban environment is creating a connection between people and the environment. Restoration of this space provides opportunities for public involvement and environmental education and awareness. This creates a forum to discuss the effects of urbanization on streams and show people where the runoff from their neighbourhood ends up. Forming that connection between people and their environment is an important step to creating interest and involvement in environmental issues.
A riparian restoration plan for a construction site on the Brunette River
Urbanization has altered riparian ecosystems, resulting in the decline of species that depend on them. The Brunette River in the Lower Mainland of British Columbia is no exception; though it currently supports a range of biotas, many of them are at-risk. These impacts are further accentuated by the expansion of the Trans Mountain Pipeline, which will result in the removal of a portion of critical habitat for the endangered Nooksack Dace. In light of the cultural significance of the basin to Kwikwetlem First Nations, the goal of this plan is to improve conditions at the project site post-construction through the establishment of culturally and ecologically important species and the addition of habitat features. I completed soil, vegetation, and water quality surveys to inform my prescriptions. Recommendations include the management of non-native species using manual and mechanical control methods and the planting of a native riparian community that fits within the confines of human infrastructure. A robust monitoring plan is also provided., critical habitat, exotic species, First Nations, restoration, riparian, urbanization
Simplified structure or fewer arthropods to eat?
In agricultural landscapes, hedgerows provide critical habitat for songbirds. Himalayan Blackberry (Rubus armeniacus; HBB) is a widespread invasive species in the Pacific Northwest that has been linked to lower breeding songbird diversity. My study explored two possible explanatory mechanisms: educed structural complexity and lower arthropod abundance as a food source. I conducted avian point counts in 51 hedgerow segments at two locations in the Lower Mainland of British Columbia. In these segments, I quantified vegetation structure using a Foliage Height Diversity (FHD) metric derived from LiDAR data. I sampled arthropod abundance on the foliage of woody understory vegetation. I used multiple regression to identify best fit generalized linear models. Songbird diversity decreased with HBB % cover and increased with FHD. However, arthropod abundance was unrelated to bird metrics, and similar between HBB and other native shrubs. This suggests that hedgerows should be managed to control HBB and maximize vegetation structure., songbird diversity, agricultural landscapes, Himalayan Blackberry, hedgerows, arthropods, LiDAR
Throwing shade
Reed canarygrass (Phalaris arundinacea) is an invasive grass common in wetlands and riparian areas throughout the Pacific Northwest. It is highly adaptable and resistant to many control methods, but is vulnerable to shading. We sought to control reed canarygrass by establishing desirable native shrubs to overtop and shade it. Plots were rototilled, mulched, live-staked, and monitored for 2-6 growing seasons. We tested 1) effective planting densities by live-staking hardhack (Spiraea douglasii) at 50, 30, and 15 cm spacing, 2) relative species performance by planting hardhack, red-osier dogwood (Cornus sericea), and thimbleberry (Rubus parviflorus), all at 30 cm densities, and 3) alternative site preparation methods by using cardboard mulch or excavating the top 20 cm of topsoil. Higher planting density significantly reduced reed canarygrass cover and biomass. Both hardhack and red-osier dogwood successfully suppressed reed canarygrass, though thimbleberry did not. No significant differences between site preparation methods were observed., reed canarygrass, Phalaris arundinacea, invasive species management, live staking, planting density, Spiraea douglasii
Using 10-years of population monitoring data to assess breeding productivity of the Oregon Spotted Frog (Rana pretiosa)
Relationships between changing environmental variables and amphibian populations have been understudied. Yet, alterations to temperature and precipitation have been suggested as contributors to the decline of some pond-breeding species, such as the Oregon Spotted Frog (Rana pretiosa). R. pretiosa has been classified as the most endangered amphibian in Canada, yet the cause for its decline is unknown. Therefore, this paper examined associations between temperature and precipitation, and R. pretiosa population trends, using a 10-year data set from two breeding populations in the Lower Mainland of British Columbia. Timing of oviposition was positively related to higher temperature and increased precipitation within both populations (p<0.05). No statistical relationship was determined between egg mass productivity and temperature or precipitation; however, this paper proposes that further research, consistent protocols and longer study periods, is necessary in order to determine environmental variables as possible predictors of population success. This paper recommends the evaluation of breeding success through survivorship studies, as such methods provide insight into productivity as the primary determinant for population recruitment. Further, ecological restoration efforts can be implemented to help ameliorate negative consequences climate change poses on reproductive success., amphibian, climate change, conservation, ecological restoration, endangered, population dynamics, population monitoring, survivorship

Pages