Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Structural influence of old field on breeding summer songbirds, and overwintering raptor communities
Old field is a unnatural habitat that usually occurs as a result of agricultural land abandonment and is the product of early-stage natural succession on a previously managed field. In an agricultural setting with monoculture crops, old fields provide more vegetative complexity through ground cover diversity and shrubs and hedgerows. In Delta, British Columbia, several old-field sites are managed for wildlife and provide nesting habitat for songbirds over the summer, as well as foraging habitat for overwintering raptors during fall and winter months. I surveyed two old-field sites near Boundary Bay, and two field sites at the Vancouver Landfill to compare the influence of old-field vegetation on different bird communities and improve understanding on species using the landfill. I conducted fixed-radius point counts for songbirds, and standing counts for raptors. Comparing replicate field types (n=2) I found that overall diversity of songbirds was higher in old field, and also associated with structural features like shrubs and trees, while abundances of Savannah Sparrows (Passerculus sandwichensis) decreased with proximity to shrubs and trees. My results support the conclusion that installing structural vegetation features at the landfill would maximize breeding songbird diversity. I also found the landfill to support higher diversity of wintering raptor species, but old field supported consistently higher abundances. This suggests that the landfill is currently functioning as lower quality wintering habitat, and that different management techniques should be considered.
Testing primed white rot fungi for bioremediation of petroleum hydrocarbon contaminated soil & bioremediation options plan for Napo concession area in Ecuador.
Bioremediation has gained traction for its sustainable principles. Although, advancements in effectiveness are still needed to enable widespread application. This research has two major components. First, priming fungi could prove to be a useful tool to increase efficiency of white-rot fungi when used to bioremediate petroleum hydrocarbons contaminated soil. This study evaluated T. versicolor colonized in two substrates to test this theory. TPH was extracted from the soils using hexane shaking method, and measured on a CG-MS. The study results were not conclusive, and more research should be conducted to determine if priming white-rot fungi can increase the effectiveness of degradation of TPH in contaminated soils. Second, historical and unethical oil production in Ecuador has left an environmental and human health disaster. The goal of this study was to produce a high-level bioremediation plan that can be used and amended for site specific applications in Ecuador.

Pages