Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Evaluating stream degradation in Villa De Allende, Mexico
I examined the anthropogenic effects on the water quality of headwater streams in the western mountains of the state of Mexico. Rural development has negative effects on the ecology of local streams by diverting and pumping surface and groundwater, removing riparian forests for the construction of buildings, roads, and agricultural fields, and dumping refuse in stream channels. Local development, construction, roads, and agriculture also are sources of pollution that enter the streams during rain events. These negative ecological effects are common to many streams in the watershed of the Chilesdo dam. The combined effects of human development negatively affect the quality of surface water and groundwater aquifers. The issue of anthropogenic effects on the water quality of headwater streams is relevant ecologically because of likely effects on flora and fauna that depend on these streams and because of the role of headwater streams in the context of the larger watershed. Effects on upstream areas directly affect people, animals, and plants downstream. This issue is relevant economically because rural communities depend on the availability of water of suitable quality for agriculture and livestock. In addition, local water quality directly affects the cost of water purification downstream at dams that feed the Cutzamala system, a major source of Mexico City’s drinking water. This issue is relevant socially because the local community depends on this water for domestic consumption. Compromising water quality and abundance could destabilize the lives of local people because poor water quality and water contamination are a public health concern. Additionally, climate change is likely to make this resource scarcer. Projections for all major scenarios used by the International Panel on Climate Change indicate elevated year-round temperatures and decreased overall precipitation in the region (IPCC 2013). I addressed concerns over water quality by testing differences among streams with anthropogenic alterations and a stream that had few anthropogenic alterations. I sampled benthic macro-invertebrate communities as indicators of water quality within the streams. Benthic invertebrates are a useful bio-indicator for water quality and environmental disturbances in river systems because different taxonomic groups of invertebrates have different tolerances to water pollution. I measured the abundance and taxonomic richness of invertebrates that exhibit different sensitivities to water quality. My results revealed that taxonomic richness was lower in streams that had anthropogenic alterations. My results also revealed that the abundance of “sensitive” and “somewhat sensitive species” were lower and that the abundance of “pollution-tolerant species” was higher in streams with anthropogenic alterations. The stream with few anthropogenic alterations had the highest taxonomic richness and largest number of sensitive and somewhat sensitive species. These results indicate that human activities are having negative effects on water quality. Given my results, I suggest that restoration of degraded streams should reduce water diversion, riparian encroachment, and refuse disposal. I propose solutions to guide these restoration efforts. My data suggests that a coordinated local and regional effort is required to reduce the negative effects of human development and to restore local streams to an ecological condition that will sustain water quality and quantity to enable local communities and the local environment to thrive.
Exploring the relative effects of different wetland restoration sites on functional connectivity for the northern red-legged frog (Rana aurora)
Amphibian species are globally at risk, with a leading cause of decline attributed to habitat loss and fragmentation. The northern red-legged frog (NRLF) is one such species and listed as a Species of Special Concern by the Species at Risk Act. The Sunshine Coast Wildlife Project is creating new wetland habitat on the Sechelt Peninsula. In this research, I provide a tool to explore the relative effects on the functional connectivity of different potential restoration sites. A habitat suitability model (HSM) was created to describe the landscape in terms of conductance, or ease of movement for NRLF. Using this conductance map, I analysed the functional connectivity between wetlands by using Circuitscape, a software grounded in circuit theory. Three potential restoration options were compared against the existing landscape. Of the three options, one had a much greater effect in increasing the overall wetlands and its connectivity to the existing network of wetlands., Functional connectivity, wetland habitat restoration, northern red-legged frog (Rana aurora), circuit theory, Circuitscape, habitat suitability model (HSM)
Factors limiting the expansion of black-tailed prairie dog colonies at their northern extent
Prairie dogs (Cynomys ludovicianus) are considered a keystone species due to their ecological role in maintaining the prairies. In Canada, they are federally listed as a threatened species. This study was conducted to identify the limiting factors to the expansion of prairie dog colonies in Grasslands National Park, Saskatchewan. I tested different hypotheses to compare landforms, vegetation, and soil characteristics in three treatments: consistently occupied (Consistent), inconsistently occupied (Inconsistent), and never occupied (Buffer) by prairie dogs. I sampled four prairie dog colonies (blocks) from 17 July 2019 to 28 August 2019 using a randomized complete block design. I used ANOVA to test variables for significant differences among treatments. My results showed that hills, water channel, shrublands, grass cover, shrub cover and vegetation height classes (>30 cm) were significantly higher (p <0.05) in Buffer compared to Consistent and Inconsistent. Shrubs and tall vegetation should be mowed down to enhance the expansion of prairie dog colonies for restoring their population., restoration, prairie dogs, Cynomys ludovicianus, colony expansion, barriers, habitat use
Geochemical and biological response of an intertidal ecosystem to localized restoration efforts
Geochemical and biological attributes of three intertidal areas in the Squamish Estuary with different levels of disturbance (low, medium, and high) were assessed to determine short-­term ecosystem responses to localized restoration efforts conducted one year previously on a former log handing site. Sediment and macroinvertebrate variables were analyzed among sites to characterize the ecosystems response and provide insight on the nature and process of an assisted successional trajectory. Invertebrate composition and biomass were lowest on the site with the highest level of disturbance. The high disturbance site also contained the highest percentage of fine sand (0.0067 mm to 0.25 mm). This confirms that in the short term there are distinct site responses to disturbance and ameliorative restoration efforts – even in a highly dynamic estuarine environment. The medium site contained more invertebrates than the low disturbance site indicating that something other than localized disturbance is affecting the invertebrate community on the low site. All sites exhibited a less-­rich and less diverse invertebrate community than that of historical records (circa. 1970-­1980). Invertebrate community in the east delta today is more typical of estuarine environments with higher salinity levels -­ which indicates more widespread levels of disturbance throughout the Estuary is affecting the study sites. This study highlights the importance of considering temporal and spatial scales when setting restoration goals, objectives and creating monitoring plans. Additional monitoring of sediment, invertebrate, and other variables on restored and reference sites is recommended to characterize typical recolonization and reassembly attributes of restoring intertidal estuaries in coastal British Columbia. This would provide evidence and rigor in determining effective restoration techniques and management strategies for a critical and increasingly threatened ecosystem., Macroinvertebrates, Restoration, Sediment, Benthic ecology, Estuaries, Intertidal flats
Identifying temporal trends and mechanisms for successful reforestation on former agricultural land
This study investigates the outcomes of restoration efforts completed on retired agricultural land in Southwest Ontario. Sites acquired by the Nature Conservancy of Canada were planted to kickstart succession to native deciduous forests, but the results of the plantings are mixed. Analysis of soil conditions indicated that low levels of soil organic carbon were correlated to low water content and high density unfavourable for plant growth. Analysis of remotely sensed imagery was done to assess and compare vegetation cover to reference conditions at Walpole Island First Nation. Analysis revealed that successful restoration was dependent on multiple soil characteristics, but conditions correlated to higher total organic carbon favoured greater vegetation cover. Remote sensing data revealed that succession towards tree canopy development was accelerated compared to passive restoration, and a shaded understory was established approximately 8-12 years following restoration. Future work can expand on succession and the effects of other restoration treatments., Soil, Reforestation, NDVI, Agriculture, Restoration, Secondary succession
Investigating regeneration in a raised ombrotrophic bog after peat extraction
Burns Bog is a raised ombrotrophic bog in Delta, British Columbia and faced with myriad disturbances. This study is focused on the impact and restoration of peat extraction by the Atkins-Durbrow Hydropeat method. Depth to water table, relative abundance and distribution of vegetation, and the degree of peat decomposition at consistent-depth intervals were investigated to elucidate the status of passive and active ecological restoration in three fields previously harvested for peat approximately one decade apart and compared to a fourth unharvested field. Summary statistics, Redundancy Analysis, and regression were used to compare restoration status and trends in hydrology, vegetation composition, and peat accumulation. A lag period between cessation of harvest and implementation of restoration, coupled with rapid anthropogenic climate change, serve as impediments to restoration here. Intervention in the form of improved rainfall retention, assisted recolonization, and the introduction of nurse species are recommended to improve bog function and resiliency., Atkins-Durbrow Hydropeat method, Ditch blocking, Ecological restoration, Peat extraction, Raised ombrotrophic bog, Burns Bog
Investigating the role of elevated salinity in the recession of a large brackish marsh in the Fraser River estuary
At least 160 ha of the Sturgeon Bank low marsh in the Fraser River delta died off between 1989 and 2011. Humans have heavily modified the Fraser River estuary since the late 1800’s, including installing a series of jetties throughout the leading edge of the delta to train the course of the river. I established a reciprocal transplant experiment to determine the role of elevated salinity in the marsh recession and generate information needed to eventually revegetate areas of receded marsh as part of an intergovernmental collaboration to investigate the causes of this marsh recession. I propose specific actions to better monitor, maintain, and restore the Fraser River delta foreshore brackish marshes in response to ongoing ecological degradation of the estuary. The predicted effects of climate change and sea-level rise may cause us to rethink options for restoring the Sturgeon Bank marsh., Restoration, Fraser River, Schoenoplectus pungens, Reciprocal transplant experiment, Marsh recession, Brackish marsh
Phytoremediation of contaminated soils
Phytoremediation poses an ecologically friendly and cost-effective alternative to other remediation methods such as chemical or thermal treatment. However, in contaminated sites such as retired oil wells and brine spills, it is common to have a co-contamination of salt and polyaromatic hydrocarbons (PAHs). The co-contamination of salt and PAHs may decrease the rate and effectiveness of bioremediation. Here we investigated the effect soil salinity has on the rate of phytoremediation, plant survivability and biomass. A 90-day greenhouse study was performed, growing alfalfa (Medicago sativa L.) in soils treated with varying salt (NaCl) concentrations in the presence of pyrene and benzo[a]pyrene. No significant differences were observed in the presence or absence of PAHs. Salt treatments has significant affects on plant biomass, nodulation, and successful germination., Bioremediation, Polyaromatic hydrocarbons, Alfalfa, Salt, Phytoremediation
Plant facilitation effects as a potential restoration tool in riparian ecosystems in Southwestern British Columbia
This study began to investigate potential facilitative effects among shrub species in riparian ecosystems in southwestern British Columbia. I ran two concurrent studies. Six plots for each of four treatments were established at the Coquitlam River Wildlife Management Area. The first two treatments compared the survival, growth, flowering, and herbivory rates of planted twinberry seedlings in plots where the shrub layer was removed to plots where it was not. The other two treatments compared the survival, growth, leaf loss, flowering and herbivory rates of snowberry plants in plots where the salmonberry upper shrub layer was removed to those where it was not. No significant differences between the measured parameters in any of the treatments were found. These results are discussed in the context of the riparian forest ecosystem and current facilitation theory. The results are then used to inform an ecological restoration plan for the Suwa’lkh School Forest., Facilitation, Riparian forests, Native vegetation, Symphoricarpos albus, Lonicera involucrate, Rubus spectabilis, Ecological restoration
Restoration of old forest characteristics in a 1957 spacing trial in the Malcolm Knapp Research Forest, British Columbia
Forest managers are interested in determining how stands that have been logged might be managed to restore features characteristic of forests in later-stages of development. Incorporating forest restoration into forest management enables the use of forest-management skills, such as silviculture and regeneration techniques, to manage individual stands for multiple objectives. Therefore, I performed a comparative analysis of large trees, very-large trees, large snags, very-large snags, and large CWD among three stand types (i.e., 60-yr-managed, 140-yr-natural, and 500-yr-natural stands). The 140-yr-natural and 500-yr-natural stands were used as reference conditions to guide the restoration of a 59-yr-managed spacing trial. All attributes differed among stand-types; however, large snags were the most similar attribute between 140-yr-natural and 500-yr-natural stands. Large trees were the fastest attribute to recover in 60-yr-managed stands, however mean values among stand-types still differed. This study highlights the potential of restoring old-natural attributes in younger-managed stands to increase ecological resiliency., forest, natural, managed, prescription, restoration, old-natural attributes
Restoration of the upper Salmon River watershed: projected effects of diversion removal on salmonid abundance
The Salmon River, located within the Laich-kwil-tach First Nations’ traditional territory on Vancouver Island, supports a diverse community of anadromous and resident salmonids despite having cumulative effects from historical resource development (Burt 2010a). Currently, BC Hydro’s diversion dam and transfer canal on the Salmon River provides water for hydroelectric power production in Campbell River, but restricts the upstream and downstream movement of native salmonids (Anderson 2009, BC Hydro 2012). This report addresses removing the Salmon River diversion and providing coho salmon (Oncorhynchus kisutch) and steelhead trout (O. mykiss) unrestricted access into the upper Salmon River watershed. This restoration project will mitigate projected effects of climate change on freshwater life stages of the Salmon River salmonids by addressing increasing stream temperatures and seasonal low flows. Completing this restoration project is the first step in recovering the salmonid productivity of the upper Salmon River., salmonid productivity, Salmon River, coho salmon, steelhead trout, ecological restoration, dam removal
Restoration options for Nicomekl River anadromous salmonids – Elgin Road Bridge Sea Dam
The Nicomekl River flows through historic Katzie First Nation territory in Surrey, British Columbia. The river provides salmon the linkage between their upland spawning and rearing grounds and the Pacific Ocean where they mature. Anthropogenic development has reduced habitat connectivity along the river, denuded the banks of vegetation, removed instream complexity, constrained the channel, regulated flow, and altered the water chemistry. A tidally controlled 7-gate sea dam is the source of the critical connectivity bottleneck on the river. It impairs free longitudinal migrations of adult and juvenile salmonids and increases adult and juvenile predation. Through literature review and site assessment, this study suggests a suite of restoration treatments to restore connectivity and site-based habitat attributes to the Nicomekl River. The study then considers management options in light of climate change, sea level rise, and how to generate public involvement to support the proposed treatments. The study concludes that urban stream restoration faces challenges as it must find a balance between the environmental and social needs of the Nicomekl River beyond simply repairing ecosystem damage and degradation., riparian restoration, salmonids, migration bottlenecks: connectivity

Pages