Master of Science in Ecological Restoration Applied Research Projects
Description
This is Canada’s first master’s program specializing in Ecological Restoration and is offered as a joint program between British Columbia Institute of Technology (BCIT) and Simon Fraser University (SFU). The MSc in Ecological Restoration combines the strong technical and applied (experiential) knowledge at BCIT with SFU’s fundamental (contextual) basic science and community engagement expertise.
This research project aims to assess the carbon sequestration dynamics of three tidal marshes under different environmental conditions in the Metro Vancouver region. By identifying the site conditions that influence carbon sequestration, areas can be prioritized, and restoration activities can be adapted to increase or maintains the marsh’s ability to do so. This project was done in partnership with Parks Canada and will contribute to a larger study of ‘blue carbon’ across British Columbia. For this project, I collected sediment cores from the eastern portion of Boundary Bay in Delta, BC, Brunswick Point in Ladner, BC, and a constructed salt marsh in Tsawwassen, BC, to assess soil carbon content and carbon stocks. Porewater salinity, vegetation data and depth measurements were collected at these sites as well. Percent carbon content ranged between 3.98 ± 1.48% and 5.78 ± 5.93% between the three marshes and the marsh carbon stock ranged between 93.95 Mg C and 2,994.51 Mg C. Across the three marshes, core carbon stock for the high marsh cores was found to be significantly higher than the core carbon stock for the low marsh cores, suggesting that marsh zonation influences carbon stock. The data analysis and literature review determined that vegetation and porewater salinity had the greatest influence on a marsh’s ability to sequester and store carbon. The results indicate that the high marsh with low salinities and a diverse plant community have the highest carbon sequestration potential. As marshes with conditions similar to that of the Boundary Bay marsh as well as polyhaline marshes should be prioritized for restoration. These findings will aid in the development and implementation of restoration projects to increase a marsh’s ability to sequester carbon., blue carbon, tidal marsh, carbon stock, British Columbia, coastal management, restoration, marsh restoration
This study investigated effects of wetland size and emergent vegetation cover on breeding waterfowl and young at 12 restored wetlands in the Cariboo region of British Columbia. Repeated ground surveys were conducted throughout summer 2019 to determine total abundance, density and species richness of waterfowl. Surveyed wetlands varied in size and emergent cover. Large (16-19 ha) wetlands had greater breeding total abundance and lower breeding and brood densities than smaller wetlands. Total abundance of breeding waterfowl and young were highest when wetlands had less than 60% emergent cover. Previous studies suggest that high densities of waterfowl decrease young survival. Restorations created to benefit several species of breeding waterfowl may want to restore wetlands that are large (>16 ha) and have less than 30% emergent vegetation cover. These wetlands had higher total abundances and lower densities than other categories studied, however, certain species may depend on smaller wetlands which should be researched further., Cariboo region, wetland restoration, breeding waterfowl, emergent vegetation
Stream temperatures in the Pacific Northwest are increasing due to climate change, resulting in thermal stress for salmonids. Groundwater is a cooler source of water into streams, providing thermal refugia. The goal of this Applied Research Project was to identify groundwater input areas in the Tsolum River, using temperature loggers to trace the thermal signal of groundwater. A total of 28 water temperature loggers and 2 air temperature loggers were deployed within the watershed in the summer of 2019. Results showed that 12 sites may be influenced by groundwater input. Restoration/management actions such as riparian planting, gravel bar live staking, and restrictions on groundwater withdrawal are recommended to decrease stream temperatures. This study demonstrated that temperature loggers can be deployed within streams to identify areas of groundwater input. The identification of thermal refugia within the Tsolum River and other salmonid-bearing streams will help to protect salmonids from climate change impacts., climate adaptation, thermal refugia, Tsolum River, groundwater
This applied research project serves as the first year of a collaborative project between the Tsleil-Waututh Nation and Kelp Rescue Initiative aimed at tailoring bull kelp (Nereocystis luetkeana) restoration methodologies to Burrard Inlet. This research characterized abiotic and biotic conditions at reference sites, compared these conditions to three identified restoration sites to determine their viability for larger-scale restoration, and trialled the green gravel and kelp-seeded tile restoration methods. This study concluded New Brighton Park has sufficiently large substrate to be a restoration site in future years. Naturally recruited N. luetkeana was found from the low intertidal to a maximum depth of 3 metres below chart datum at an average sporophyte density of ~3 sporophytes per m2 in the late summer. The restoration trials saw limited success past April; however, lessons learned suggest outplanting larger kelp-seeded rocks and attaching kelp-seeded tiles to larger substrate could increase restoration success., macroalgae, kelp, Nereocystis luetkeana, restoration, green gravel
The viability of native bunchgrass ecosystems throughout the PPxh BEC subzone and in Kenna Cartwright Park (KCP) in Kamloops B.C. are under threat by invasive plants. Once established, invasive plants are difficult to eradicate and can predominate the landscape. I collected soil samples from a relatively undisturbed bunchgrass reference site composed of native bluebunch wheatgrass (Pseudoroegneria spicata), and I collected soil samples from a bunchgrass site occupied by the invasive plants, spotted knapweed (Centaurea stoebe) and dalmatian toadflax (Linaria dalmatica), to compare the soil nematode communities. My results reveal differences in the community-level biodiversity and abundance of soil nematodes between sites. The Maturity Index and the Plant Parasitic Index indicate that the native bunchgrass site had a “Structured” soil food web and that the site occupied by invasive plants had a “Basal” soil food web. My results indicate soil nematodes are useful as bioindicators of soil properties and these data provide useful criteria to help prioritize sites for ecological restoration., Nematology, Invasive plants, Pseudoroegneria spicata, Biological indicators, Ecological restoration
Perennial watercourses in British Columbia are becoming intermittent from climate change. North American beaver (Castor canadensis) dams retain perennial flow while providing other ecosystem services. The Beaver Restoration Assessment Tool (BRAT) estimates a stream’s dam capacity by evaluating the vegetative, physical, and hydrological habitat. This research project surveyed 15 streams in the Cariboo region to assess the accuracy of the BRAT’s outputs. Climate data were used to model changes in flow. Overall, the BRAT outputs generally correlated with field measurements. However, the non-vegetation outputs contributed minimally to dam capacity, and higher dam capacity did not always indicate higher habitat quality. Climate projections also indicate most streams will lose nival flow by 2041-2071. Therefore, using the BRAT with other models can determine both dam capacity and overall habitat quality to increase successful beaver restoration chances. When vegetation and physical stream conditions are met, higher watershed/channel size may indicate higher-quality habitat.
Options for ecological restoration are discussed for the Clear Lake – South Lake complex of Riding Mountain National Park, Manitoba. This project consisted of a) a review of studies conducted on Clear Lake and South Lake and b) a stream water quality sampling program. The review of previous studies was to gain an in-depth understanding of historical processes which shaped Clear Lake and South Lake. Previous condition, current condition and ecological stressors are all identified based on literature from Riding Mountain National Park. The stream water quality sampling program identifies major sources of nutrients into Clear Lake. Ecological restoration options pertain specifically to the Clear Lake – South Lake complex. South Lake restoration options include supplemental planting, dredging and chemical treatments. A novel technique designed to disrupt wind driven nutrient loading is also discussed. These methods are designed to return the South Basin to a macrophyte dominated system. Addressing hypolimnetic oxygen deficiency, two forms of hypolimnetic aeration are discussed to improve water quality in Clear Lake including a ‘Full lift’ design as well as a Speece Cone. Three options regarding the isthmus and connectivity between Clear Lake and South Lake are examined including a fishway installation and a wattle fence installation.
Grassland ecosystems are rare, in decline, and support a multitude of at-risk species in British Columbia. At the University of British Columbia Okanagan in Kelowna BC, a 3.3 ha site at the entrance of the campus is outlined as Okanagan grassland in campus design plans but currently lacks native bunchgrass communities. The goal of this restoration plan is to return grassland plant communities to the site despite the pervasiveness of noxious weeds. I characterised site conditions through soil and vegetation surveys. Restoration recommendations include managing noxious weeds through mowing, hand-pulling and some herbicide application. The site will be replanted with bunchgrass vegetation, two pockets of ponderosa forest, and two types of shrub communities. A walking path, signage, and two xeriscape gardens will also be included to control human use of the landscape. Long-term monitoring will be incorporated into classroom curricula to tie monitoring to learning opportunities., Grassland, exotic plants, Noxious weeds, urban restoration, restoration plan
Degraded peatlands release 100-200 g-CO2 eqv. m-2 yr-1 in net emissions and account for more than 10% of global CO2 emissions. The success of bog restoration is dependent on creating suitable moisture conditions for the donor material to establish, propagate, and develop a new layer of Sphagnum that has hydrophysical and water retention properties similar to natural peatlands. Techniques to improve moisture retention during the transplant process and increase water holding capability of the restored Sphagnum layer have been identified as an area of bog restoration that requires more research. Samples were collected from plots fertilized with six different nitrogen treatments at Mer Bleue Bog in Ottawa, Canada. Net CO2 assimilation, fresh weight, dry weight, water content, and dissolved nutrient measurements were made to determine the potential effectiveness of incorporating nitrogen fertilization into the North American approach to peatland restoration. High levels of nitrogen fertilization exerted deleterious effects on individual morphology, growth density, water holding and retention capacity, CO2 assimilation, and nutrient dynamics and decomposition. Fertilization with 1.6 g m-2 yr-1 of ammonium has the potential to ameliorate water retention capacity through more robust individual morphology and denser growth patterns and increases carbon assimilation and photosynthetic capacity. The results indicate integrating low levels of ammonium fertilization into bog restoration techniques can potentially increase restoration success., water content, carbon dioxide assimilation, growth density, peatland restoration, ammonium, nitrate
This research project evaluates the outcomes of returning prescribed fire to endangered Garry oak meadows as a restoration treatment. This project was done in partnership with Parks Canada and involved a case study on a three-year post-burn site on Tumbo Island in the Gulf Islands National Park Reserve. Soil chemical properties were analyzed three years post burn in the summer of 2019 and compared to pre and post-burn vegetation survey results. Analysis identified beneficial changes in soil chemistry still present three years post treatment. Invasive species occurrences increased across the site, regardless of treatment, and around half of the invasive species occurrences were recorded on burn treatments areas in 2018. Prescribed burns on shallow soil Garry oak meadow sites showed beneficial outcomes for soil chemistry, reduced conifer encroachment, increased diversity and Arbutus (Arbutus menziesii) seedling recruitment. These findings aid in determining restoration plans for shallow soil Garry oak meadows, highlighting the numerous benefits from prescribed fire, while also suggesting that additional treatments in conjunction with prescribed fire will be needed to control invasive plants when planning to restore these ecosystems., shallow soil, Garry oak meadows, restoration, prescribed fire, soil nutrients, invasive plant species
Prescribed burning and hand-pulling are used to manage invasive plants but treatments can deferentially affect species. My objective is to determine the effect of time-since-burning and hand-pulling on stem density and growth of Centaurea stoebe (spotted knapweed) and Linaria dalmatica (Dalmatian toadflax). Prescribed burns occurred in March 2015 and 2016, while hand-pulling occurred in April and May of 2017. I conducted vegetation surveys in May, June, and July 2017. Growth rates differed among treatments and by species. Centaurea stoebe was not detected in the prescribed burn treatments. Hand-pulling increased stem density of C. stoebe, but individuals were smaller and 60% remained as basal rosettes compared to control. Linaria dalmatica were significantly taller in the burn treatments, and the stem density of L. dalmatica was greater in the prescribed burn and hand-pull treatments compared to control. The tallest L. dalmatica occurred in the 2-year post-burn site, indicating a time-since-burning interaction., invasive plants, prescribed burning, hand-pulling, Cetaurea stoebe, Linaria dalmatica
Assessing restoration success for pond-breeding amphibians frequently focuses on hydrology, water quality and vegetation, while neglecting the requirements of amphibians that use the restored areas for breeding. Both biotic and abiotic conditions can influence oviposition-site selection of amphibians that do not provide parental care. This study examines how vegetation structure and abiotic variables affect oviposition-site selection by amphibians. The goal of my study was to better understand the requirements of pond-breeding amphibians. In 2017, I surveyed egg masses in four ponds at the Sunshine Coast Botanical Garden in Sechelt, B.C. I identified 667 egg masses of four native amphibian species that varied in abundance and species richness among ponds. I recorded five biotic variables (i.e., vegetation cover, vegetation type, stem density, stem diameter, and canopy closure) and two abiotic variables (i.e., water depth and solar radiation) at egg-mass sites and random sites where no egg masses were detected. Logistic regression analysis with backward elimination revealed that stem count (p = 0.008) and water depth (p = 0.0001) significantly influenced oviposition-site selection. The results also showed that higher stem density and shallower water depth increased the likelihood of egg masses being present. My study indicated that quantifying stems in the water column characterized vegetation density better than estimating percent cover of vegetation. Shallow areas that have structurally complex vegetation might provide an advantage for the offspring by increasing refuge, food resources, and favourable thermal conditions for egg development. Hence, restoration projects could incorporate vegetation structure and shallow areas in their pond designs to potentially increase the abundance and diversity of amphibian communities, thereby contributing to successful restoration projects., ecological restoration, amphibians, oviposition, Rana aurora, Pseudacris regilla, Ambystoma gracile, Amystoma macrodactylum, vegetation structure, abiotic variables
In the Fraser River Estuary of British Columbia, tidal marshes have been receding and converting into unvegetated mudflats since the 1980s. While there are many hypotheses for this recession, the effect of avian herbivory is poorly understood. This study assessed how Canada Goose (Branta canadensis) and Snow Goose (Chen caerulescens) herbivory affected cover of tidal marsh vegetation that was comprised mainly of three-square bulrush (Schoenoplectus pungens) in the Westham Island tidal marsh. I conducted two field-based exclosure experiments, marsh edge and mudflat, that used exclosure plots to reduce specific goose herbivory in a randomized block design. Each experiment consisted of four blocks each of which was comprised of four treatments: open to goose herbivory, excluded all goose herbivory, primarily excluded Canada Goose herbivory, or primarily excluded Snow Goose herbivory. The marsh edge experiment used exclosures centered on the vegetated edge of the marsh, while the mudflat experiment was conducted in the unvegetated mudflat and were transplanted with S. pungens. Based on results from July to October of 2020, percent cover of tidal marsh vegetation was about 20% lower in plots open to Canada Goose herbivory versus those that excluded geese. Snow Goose herbivory could not be accurately assessed as they arrived when S. pungens were dormant. Thus, deterring goose herbivory may be an important consideration for land managers in restoring tidal marshes. Additionally, I compared percent cover from drone-derived remote sensing to traditional ground-based visual estimates of percent cover of S. pungens in the tidal marsh. One per month, from July to October of 2020, I used a drone to take photos of the exclosures from the previous experiments, and used pixel counts to calculate the percent cover of S. pungens. I then used a t-test to compare the drone-derived percent cover to the ground-based estimates and found no significant difference (t = 0.58, p = 0.56). I then plotted a linear regression model and found a strong correspondence between both methods (R² = 0.99, p = 1.3e-139). So, remote sensing using drones appears to be an effective alternative to visual estimates of percent cover of tidal-marsh vegetation in the Westham island tidal marsh., Tidal marsh recession, Goose herbivory, Canada Goose, Snow Goose, Schoenoplectus pungens, Drones
Spotted knapweed (Centaurea stoebe) is a non-native invasive forb found throughout North America that suppresses native vegetation and reduces biodiversity. The designation of Blakiston Fan (Waterton Lakes National Park, Alberta) as critical habitat for the endangered half-moon hairstreak butterfly (Satyrium semiluna) brought forward concerns of the effects of knapweed management practices on the hairstreak and its native larval and nectar host plants. This pilot study used a randomized complete block design to examine the within-season change in cover of spotted knapweed and silky lupine (Lupinus sericeus) in response to herbicide application and two timings of manual removal (i.e., mid-June and late-July). This study also examined changes in the vegetation community and relative abundance of hairstreak butterflies across the fan. Significant treatment effects (p= 0.006, f3, 12= 6.89) were seen in the change in percent cover of spotted knapweed two weeks post-treatment between herbicide and control plots. There was no significant difference in the change in lupine percent cover among treatments (p= 0.075, f3, 12= 2.96). Cover of native host plants and hairstreak abundance were greatest in the south fan. Increases in knapweed cover were lowest in the south fan. Based on these results, a triaged management plan was recommended with restoration efforts focused on the south fan. Recommendations for the south fan include selective herbicide application to limit spotted knapweed distribution, closure of horse trails, and a native planting and seeding experiment. Management of the north and central fan was recommended to focus on the control of knapweed monocultures through intensive herbicide application and establishing biological control agents for long-term control. Further research of the hairstreak lifecycle is needed to understand the primary mechanism of decline, as well as, research into the response of native nectar host plants to knapweed control. Monitoring the response of the vegetation community and relative abundance of hairstreaks following the Kenow fire of 2017 is key in prioritizing restoration actions for Blakiston Fan., vegetation mapping, species at risk, host plant, invasive species, ecological restoration, Aminopyralid
Amphibian species are globally at risk, with a leading cause of decline attributed to habitat loss and fragmentation. The northern red-legged frog (NRLF) is one such species and listed as a Species of Special Concern by the Species at Risk Act. The Sunshine Coast Wildlife Project is creating new wetland habitat on the Sechelt Peninsula. In this research, I provide a tool to explore the relative effects on the functional connectivity of different potential restoration sites. A habitat suitability model (HSM) was created to describe the landscape in terms of conductance, or ease of movement for NRLF. Using this conductance map, I analysed the functional connectivity between wetlands by using Circuitscape, a software grounded in circuit theory. Three potential restoration options were compared against the existing landscape. Of the three options, one had a much greater effect in increasing the overall wetlands and its connectivity to the existing network of wetlands., Functional connectivity, wetland habitat restoration, northern red-legged frog (Rana aurora), circuit theory, Circuitscape, habitat suitability model (HSM)
Prairie dogs (Cynomys ludovicianus) are considered a keystone species due to their ecological role in maintaining the prairies. In Canada, they are federally listed as a threatened species. This study was conducted to identify the limiting factors to the expansion of prairie dog colonies in Grasslands National Park, Saskatchewan. I tested different hypotheses to compare landforms, vegetation, and soil characteristics in three treatments: consistently occupied (Consistent), inconsistently occupied (Inconsistent), and never occupied (Buffer) by prairie dogs. I sampled four prairie dog colonies (blocks) from 17 July 2019 to 28 August 2019 using a randomized complete block design. I used ANOVA to test variables for significant differences among treatments. My results showed that hills, water channel, shrublands, grass cover, shrub cover and vegetation height classes (>30 cm) were significantly higher (p <0.05) in Buffer compared to Consistent and Inconsistent. Shrubs and tall vegetation should be mowed down to enhance the expansion of prairie dog colonies for restoring their population., restoration, prairie dogs, Cynomys ludovicianus, colony expansion, barriers, habitat use