Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Ecological restoration options for Clear Lake and South Lake (Riding Mountain National Park), Manitoba
Options for ecological restoration are discussed for the Clear Lake – South Lake complex of Riding Mountain National Park, Manitoba. This project consisted of a) a review of studies conducted on Clear Lake and South Lake and b) a stream water quality sampling program. The review of previous studies was to gain an in-depth understanding of historical processes which shaped Clear Lake and South Lake. Previous condition, current condition and ecological stressors are all identified based on literature from Riding Mountain National Park. The stream water quality sampling program identifies major sources of nutrients into Clear Lake. Ecological restoration options pertain specifically to the Clear Lake – South Lake complex. South Lake restoration options include supplemental planting, dredging and chemical treatments. A novel technique designed to disrupt wind driven nutrient loading is also discussed. These methods are designed to return the South Basin to a macrophyte dominated system. Addressing hypolimnetic oxygen deficiency, two forms of hypolimnetic aeration are discussed to improve water quality in Clear Lake including a ‘Full lift’ design as well as a Speece Cone. Three options regarding the isthmus and connectivity between Clear Lake and South Lake are examined including a fishway installation and a wattle fence installation.
Restoring hydrological connectivity in the Guichon Creek watershed through wetland creation
Urbanization of areas alters the natural hydrology of the land through the creation of impervious surfaces, removal of vegetation, and construction of storm sewer systems. These alterations impact physical processes and the biological communities of our waterways through the introduction of pollutants, creation of uncharacteristic hydrological regimes, and habitat loss and fragmentation. Integration of natural areas in our built environments will mitigate some of these effects and reduce the degradation of streams in urbanized watersheds. Guichon Creek flows through an urbanized environment, which includes the British Columbia Institute of Technology (BCIT) Burnaby campus. A tributary flows into Guichon Creek at the south end of campus and the majority of its flow is from a stormwater sewer which receives runoff from the residential area east of campus. The tributary is approximately 150 metres and runs between a community garden and a small gravel parking lot before entering Guichon Creek. This project proposes restoration of a 2,000 m2 parcel of land between Guichon Creek and the tributary. Restoration activities involve removal of an existing parking lot, management of invasive hybrid Japanese knotweed (Fallopia x bohemica) and Himalayan blackberry (Rubus armeniacus), creation of an off channel wetland, and addition of natural in-stream structures to the tributary. Wetlands provide important hydrological and ecological functions that will contribute to the restoration efforts on Guichon Creek. This wetland will improve hydrological functions of the Guichon Creek floodplain through increased groundwater infiltration, creation of a storage area, and pollutant filtration. Improving these functions is also an important component of making stream ecosystems more resilient to climate change. The wetland will also provide ecological benefits such as improved water quality and creation of amphibian habitat. This project focuses on the creation of habitat for northern red-legged frog (Rana aurora) and the Pacific chorus frog (Psuedacris regilla). Another important component of restoration in an urban environment is creating a connection between people and the environment. Restoration of this space provides opportunities for public involvement and environmental education and awareness. This creates a forum to discuss the effects of urbanization on streams and show people where the runoff from their neighbourhood ends up. Forming that connection between people and their environment is an important step to creating interest and involvement in environmental issues.