Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

The effect of nitrogen fertilization on the physiology and morphology of Sphagnum capillifolium in an ombrotrophic bog
Degraded peatlands release 100-200 g-CO2 eqv. m-2 yr-1 in net emissions and account for more than 10% of global CO2 emissions. The success of bog restoration is dependent on creating suitable moisture conditions for the donor material to establish, propagate, and develop a new layer of Sphagnum that has hydrophysical and water retention properties similar to natural peatlands. Techniques to improve moisture retention during the transplant process and increase water holding capability of the restored Sphagnum layer have been identified as an area of bog restoration that requires more research. Samples were collected from plots fertilized with six different nitrogen treatments at Mer Bleue Bog in Ottawa, Canada. Net CO2 assimilation, fresh weight, dry weight, water content, and dissolved nutrient measurements were made to determine the potential effectiveness of incorporating nitrogen fertilization into the North American approach to peatland restoration. High levels of nitrogen fertilization exerted deleterious effects on individual morphology, growth density, water holding and retention capacity, CO2 assimilation, and nutrient dynamics and decomposition. Fertilization with 1.6 g m-2 yr-1 of ammonium has the potential to ameliorate water retention capacity through more robust individual morphology and denser growth patterns and increases carbon assimilation and photosynthetic capacity. The results indicate integrating low levels of ammonium fertilization into bog restoration techniques can potentially increase restoration success., water content, carbon dioxide assimilation, growth density, peatland restoration, ammonium, nitrate
Phytoremediation of contaminated soils
Phytoremediation poses an ecologically friendly and cost-effective alternative to other remediation methods such as chemical or thermal treatment. However, in contaminated sites such as retired oil wells and brine spills, it is common to have a co-contamination of salt and polyaromatic hydrocarbons (PAHs). The co-contamination of salt and PAHs may decrease the rate and effectiveness of bioremediation. Here we investigated the effect soil salinity has on the rate of phytoremediation, plant survivability and biomass. A 90-day greenhouse study was performed, growing alfalfa (Medicago sativa L.) in soils treated with varying salt (NaCl) concentrations in the presence of pyrene and benzo[a]pyrene. No significant differences were observed in the presence or absence of PAHs. Salt treatments has significant affects on plant biomass, nodulation, and successful germination., Bioremediation, Polyaromatic hydrocarbons, Alfalfa, Salt, Phytoremediation
Simplified structure or fewer arthropods to eat?
In agricultural landscapes, hedgerows provide critical habitat for songbirds. Himalayan Blackberry (Rubus armeniacus; HBB) is a widespread invasive species in the Pacific Northwest that has been linked to lower breeding songbird diversity. My study explored two possible explanatory mechanisms: educed structural complexity and lower arthropod abundance as a food source. I conducted avian point counts in 51 hedgerow segments at two locations in the Lower Mainland of British Columbia. In these segments, I quantified vegetation structure using a Foliage Height Diversity (FHD) metric derived from LiDAR data. I sampled arthropod abundance on the foliage of woody understory vegetation. I used multiple regression to identify best fit generalized linear models. Songbird diversity decreased with HBB % cover and increased with FHD. However, arthropod abundance was unrelated to bird metrics, and similar between HBB and other native shrubs. This suggests that hedgerows should be managed to control HBB and maximize vegetation structure., songbird diversity, agricultural landscapes, Himalayan Blackberry, hedgerows, arthropods, LiDAR