Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

The effect of nitrogen fertilization on the physiology and morphology of Sphagnum capillifolium in an ombrotrophic bog
Degraded peatlands release 100-200 g-CO2 eqv. m-2 yr-1 in net emissions and account for more than 10% of global CO2 emissions. The success of bog restoration is dependent on creating suitable moisture conditions for the donor material to establish, propagate, and develop a new layer of Sphagnum that has hydrophysical and water retention properties similar to natural peatlands. Techniques to improve moisture retention during the transplant process and increase water holding capability of the restored Sphagnum layer have been identified as an area of bog restoration that requires more research. Samples were collected from plots fertilized with six different nitrogen treatments at Mer Bleue Bog in Ottawa, Canada. Net CO2 assimilation, fresh weight, dry weight, water content, and dissolved nutrient measurements were made to determine the potential effectiveness of incorporating nitrogen fertilization into the North American approach to peatland restoration. High levels of nitrogen fertilization exerted deleterious effects on individual morphology, growth density, water holding and retention capacity, CO2 assimilation, and nutrient dynamics and decomposition. Fertilization with 1.6 g m-2 yr-1 of ammonium has the potential to ameliorate water retention capacity through more robust individual morphology and denser growth patterns and increases carbon assimilation and photosynthetic capacity. The results indicate integrating low levels of ammonium fertilization into bog restoration techniques can potentially increase restoration success., water content, carbon dioxide assimilation, growth density, peatland restoration, ammonium, nitrate
The effect of time-since-burning and hand-pulling on the growth and stem density of Centaurea stoebe and Linaria dalmatica
Prescribed burning and hand-pulling are used to manage invasive plants but treatments can deferentially affect species. My objective is to determine the effect of time-since-burning and hand-pulling on stem density and growth of Centaurea stoebe (spotted knapweed) and Linaria dalmatica (Dalmatian toadflax). Prescribed burns occurred in March 2015 and 2016, while hand-pulling occurred in April and May of 2017. I conducted vegetation surveys in May, June, and July 2017. Growth rates differed among treatments and by species. Centaurea stoebe was not detected in the prescribed burn treatments. Hand-pulling increased stem density of C. stoebe, but individuals were smaller and 60% remained as basal rosettes compared to control. Linaria dalmatica were significantly taller in the burn treatments, and the stem density of L. dalmatica was greater in the prescribed burn and hand-pull treatments compared to control. The tallest L. dalmatica occurred in the 2-year post-burn site, indicating a time-since-burning interaction., invasive plants, prescribed burning, hand-pulling, Cetaurea stoebe, Linaria dalmatica
The effect of vegetation structure and abiotic variables on oviposition-site selection by amphibians
Assessing restoration success for pond-breeding amphibians frequently focuses on hydrology, water quality and vegetation, while neglecting the requirements of amphibians that use the restored areas for breeding. Both biotic and abiotic conditions can influence oviposition-site selection of amphibians that do not provide parental care. This study examines how vegetation structure and abiotic variables affect oviposition-site selection by amphibians. The goal of my study was to better understand the requirements of pond-breeding amphibians. In 2017, I surveyed egg masses in four ponds at the Sunshine Coast Botanical Garden in Sechelt, B.C. I identified 667 egg masses of four native amphibian species that varied in abundance and species richness among ponds. I recorded five biotic variables (i.e., vegetation cover, vegetation type, stem density, stem diameter, and canopy closure) and two abiotic variables (i.e., water depth and solar radiation) at egg-mass sites and random sites where no egg masses were detected. Logistic regression analysis with backward elimination revealed that stem count (p = 0.008) and water depth (p = 0.0001) significantly influenced oviposition-site selection. The results also showed that higher stem density and shallower water depth increased the likelihood of egg masses being present. My study indicated that quantifying stems in the water column characterized vegetation density better than estimating percent cover of vegetation. Shallow areas that have structurally complex vegetation might provide an advantage for the offspring by increasing refuge, food resources, and favourable thermal conditions for egg development. Hence, restoration projects could incorporate vegetation structure and shallow areas in their pond designs to potentially increase the abundance and diversity of amphibian communities, thereby contributing to successful restoration projects., ecological restoration, amphibians, oviposition, Rana aurora, Pseudacris regilla, Ambystoma gracile, Amystoma macrodactylum, vegetation structure, abiotic variables
Experimental control of Spotted Knapweed (Centaurea stoebe) within critical habitat of the endangered Half-moon Hairstreak Butterfly (Satyrium semiluna)
Spotted knapweed (Centaurea stoebe) is a non-native invasive forb found throughout North America that suppresses native vegetation and reduces biodiversity. The designation of Blakiston Fan (Waterton Lakes National Park, Alberta) as critical habitat for the endangered half-moon hairstreak butterfly (Satyrium semiluna) brought forward concerns of the effects of knapweed management practices on the hairstreak and its native larval and nectar host plants. This pilot study used a randomized complete block design to examine the within-season change in cover of spotted knapweed and silky lupine (Lupinus sericeus) in response to herbicide application and two timings of manual removal (i.e., mid-June and late-July). This study also examined changes in the vegetation community and relative abundance of hairstreak butterflies across the fan. Significant treatment effects (p= 0.006, f3, 12= 6.89) were seen in the change in percent cover of spotted knapweed two weeks post-treatment between herbicide and control plots. There was no significant difference in the change in lupine percent cover among treatments (p= 0.075, f3, 12= 2.96). Cover of native host plants and hairstreak abundance were greatest in the south fan. Increases in knapweed cover were lowest in the south fan. Based on these results, a triaged management plan was recommended with restoration efforts focused on the south fan. Recommendations for the south fan include selective herbicide application to limit spotted knapweed distribution, closure of horse trails, and a native planting and seeding experiment. Management of the north and central fan was recommended to focus on the control of knapweed monocultures through intensive herbicide application and establishing biological control agents for long-term control. Further research of the hairstreak lifecycle is needed to understand the primary mechanism of decline, as well as, research into the response of native nectar host plants to knapweed control. Monitoring the response of the vegetation community and relative abundance of hairstreaks following the Kenow fire of 2017 is key in prioritizing restoration actions for Blakiston Fan., vegetation mapping, species at risk, host plant, invasive species, ecological restoration, Aminopyralid
Hypolimnetic upwelling in coastal embayments of Lake Ontario; implications for restoration
Coastal wetlands are an important ecosystem in the Great Lakes basin, providing spawning grounds and warm-water refuge for numerous fish and benthic invertebrate species during cold water upwelling events. Urbanization along the northwestern shore of Lake Ontario has led to a depletion of coastal wetlands, replacing them with artificial embayments. Three artificial embayments, the Credit River estuary, and one coastal marsh in Mississauga, ON were studied to determine if the artificial embayments function as warm-water refuge during upwelling events. Temperature loggers were placed in each study site and temperature was recorded every 15 minutes from July to October 2017. Upwelling events were isolated from the data, and frequency, magnitude, and duration of upwelling was determined. Most study sites had a frequency of 4 upwelling events throughout the study period. The average duration of upwellings varied from 30 to 70 hours, and the average temperature change ranged from -7.1ᵒC to -11.9ᵒC. All of the study sites seemed to buffer upwellings by reducing the magnitude of temperature change and increasing the duration of upwelling events to varying degrees. These results will inform the creation of future wetlands, restoration of existing embayments, and conservation of Great Lakes coastal wetlands., ecological restoration, coastal embayments, coastal marsh, upwelling, warm-water refuge, Lake Ontario
A meta-analysis of North Shore streams: maximizing the effect of installed rain gardens through strategic placement
A meta-analysis using pre-existing data was done for streams in the North Shore of Vancouver, British Columbia. Parameters considered were chemical concentrations from stormwater input including: heavy metals concentrations (Copper (Cu), Zinc (Zn), Cadmium (Cd), Lead (Pb)) and nutrient concentrations (Nitrate (N03-) and Orthophosphate (P04 3-))_ Chronic toxicity guideline exceedance based on the British Columbia Approved Water Quality Guidelines was found in all 94% of stream systems for Cu and 44% of stream systems for Zn. Heavy metal concentrations were found to be positively correlated with percent impervious surface cover in the watershed, with the strength of the correlation being metal-dependent. Three sites within the study had the highest levels of both Cu and Zn. These watersheds (Upper Keith Creek, Maplewood Creek, and Mackay Creek) were prioritized for rain garden installation. Rain garden building specifications to remediate for Zn and Cu were recommended and included addition of mulch layer, minimum depth of topsoil (30 cm), and vegetating with plants with high potential for biofiltration and/or phytoremediation., Impervious surface cover, Stormwater, Rain garden, Green infrastructure, Heavy metal analysis
A mitigation plan for salmonid spawning habitat in the Lower Seymour River, North Vancouver
Salmonids are a very important species to British Columbia and the Pacific Northwest. They are an icon of British Columbia’s heritage and they hold many ecological, economical, recreational, and cultural values. Unfortunately, Pacific salmonid populations have been declining over the last century due many reasons including degradation of freshwater habitat used for spawning and rearing. This degradation is largely due to expanding urbanization and the installation of dams for flood control, hydropower and water supply. The Seymour River is a mountainous river located in North Vancouver. Over the past century, this river has been subjected to many anthropogenic activities that have cumulatively altered the natural flow and sediment regime. The Seymour Falls Dam, located in the middle of the watershed, intercepts gravel transport from the upper watershed into the lower reaches. This combined with the intense channelization within the lower 4 km of the river, which has created conditions incapable of gravel deposition and retention, has led the lower reaches to become gravel deficient. This gravel deficiency has caused the degradation of traditional spawning grounds of chum (Oncorhynchus keta), and pink salmon (Oncorhynchus gorbuscha). This study aims to: 1) determine if there is a gravel deficiency for chum and pink salmon spawning in the lower 1.5 km reaches and, 2) provide recommended mitigative treatments of gravel addition to increase suitable spawning area, and therefore increase salmon productivity of the Seymour River. A site assessment was conducted on the lower 1.5 km of the Seymour River and included sampling of the five key parameters that define spawning habitat (i.e., water depth, velocity, dissolved oxygen, water temperature and substrate). A particular focus was given on analysing the substrate as it was expected to be deficient for spawning due to the predetermined conditions in the watershed such as the dam and the channelization. Results of the site assessment confirmed that substrate is the limiting factor for chum and pink salmon spawning in this area as the bed surface is composed of large cobbles and boulders too large for these specific species to move to dig a redd. Therefore, a xi mitigation plan of gravel addition is proposed to increase spawning habitat and conserve these salmon runs. Two gravel placement sites were selected between Mt. Seymour Parkway and Dollarton Bridge. A gravel mobility analysis determined that suitable-sized gravel will not be deposited or retained naturally on the channel bed due to the slope and water depth at high flood events. Therefore, gravel catchment structures are proposed to dissipate energy, thereby promoting deposition and reducing scouring. Each site contains a different design tailored to the specific characteristics of that reach. To retain gravel, spurs composed of the surface cobbles and boulders are proposed along with imbedded gravel pads composing of suitably sized gravel brought in from a local source. In total these two sites could provide about 1,925 m2 of additional spawning habitat which could support 209-836 pairs of chum or 3,208 pairs of pink salmon. Through long-term monitoring, this project in the Seymour River could provide strategies of gravel placement in large, urbanized, gravel-deficient rivers, in which current research is limited. Many rivers in North Vancouver (i.e., Capilano River, Lynn Creek, McKay Creek and Mosquito Creek) may be experiencing a gravel deficit similar to the Seymour River, and the strategies outlined in this project could be adapted to the specific conditions of those rivers. The cumulative effect of adding spawning gravel in each river within the Burrard Inlet, as well as elsewhere in the Pacific Northwest, could reduce stress in their freshwater phase and aid in rebuilding salmon populations from their precipitous decline in which they are on currently on track for. The strategies provided will also become important as more rivers become sediment deprived due to the construction of hydropower dams in response to a change from fossil fuels to renewable energies as climate change continues. The need for more innovative habitat mitigation strategies will be necessary to keep salmon from becoming a relic of the past.
Restoration of an urban creek water quality using sand and biochar filtration galleries
Stormwater runoff from parking lots often contains a variety of elements and compounds in different forms and concentrations that may pose risks to biota in receiving aquatic systems. Heavy metals including copper (Cu) and zinc (Zn), and polycyclic aromatic hydrocarbons (PAHs) are of particular concern in such runoff due to their prevalence, toxicity to aquatic organisms and persistence in the environment. The ability of a commercially available biochar to remove pollutants of concern through column treatments was assessed in this research. Factors including the pollutant’s concentration, total organic carbon (TOC), pH, and biochar particle size were considered. The biochar used in this study showed a significant heavy metals and PAH removal ability compared to sand, qualifying it as a potential substitute for sand in urban structural best management practices. Maximum percentage removal using biochar followed the order of naphthalene (NAP) > Zn > Cu. Regarding Cu and Zn removal, small biochar exhibited higher removal efficiency compared to medium biochar. In terms of NAP removal, both small and medium biochar exceeded sand with a five-fold percentage removal. However, biochar of different particle sizes had the same removal percentage., infiltration swale, biochar, parking lot stormwater, naphthalene, stormwater management, heavy metals, PAH
Restoration of salmonid spawning habitat in the Upper Serpentine River
Over the past half century, urbanization has caused drastic changes to the hydrology and geomorphology of streams and rivers. The Serpentine River is a low-elevation, rain-dominant river located in the City of Surrey, British Columbia. Over the years, urbanization of the watershed, particularly in the upper reaches, has degraded what once was high quality spawning habitat for five salmonid species. The current project is an evaluation of previous restoration efforts at seven study sites and a restoration plan to effectively increase spawning habitat in the Upper Serpentine River. Grain size analysis of the study sites found up to 57% fine sediment in the subsurface particles, attributing to siltation rates of 1.2-1.6 kg/m2/day. Erodible grain sizes at the study sites ranged from 29-164 mm, which mostly exceeded the median size of spawning gravel. These results were verified with a tracer rock study, which together concluded that instream structures were required to reduce tractive forces and increase gravel retention. Newbury weirs, or constructed riffles, were proposed as treatments because their hydraulic characteristics increase flow resistance, promote gravel retention, and create intergravel flows. Newbury weirs involve large diameter rocks spanning across the entire stream, causing accumulation of gravel on the upstream side and pool formation downstream side. Substrate scoured at the pool will be deposited at the tail end of the pool, creating spawning habitat in accelerating and downwelling waters. Bank stabilization using dense live staking with a protective rock toe key was prescribed to reduce further channel incision and siltation. In the longterm, watershed-level priorities including passage through the Serpentine sea dam, monitoring for urban contaminants, and installation of green infrastructure was recommended. The proposed treatments are relatively inexpensive, and if successful, will reduce repeat addition of spawning gravel and increase salmonid production in the Serpentine River. However, the value of the current project extends beyond fish productivity estimates. Monitoring data from restoration works can be used to inform future urban stream restoration projects and contribute to the continual improvement of restoration techniques. The effects of restoration on not only sediment form (ie. gravel depth and size) but also processes (ie. sediment scour and fill) should be investigated in the field to verify theoretical models.
A restoration strategy to avert the projected ecological, social and economic risks of Lost Lagoon in Stanley Park, British Columbia
The coastal saltmarsh that once made up Lost Lagoon was isolated into a freshwater impoundment to enable the construction of the Stanley Park Causeway in 1916. Water chemistry, water nutrients, and subsurface sediment were collected in August to October 2017, and it was concluded that Lost Lagoon is experiencing, low DO (average 6 mg/L), high salinity (0.9 ppt), high nutrient loading (TP 0.1 mg/L and TN 0.9 mg/L) and has elevated heavy metals (Cd, Cu, Ni, Pb, and Zn). A general biotic inventory was conducted and results indicated a lack of native species diversity and presence of invasive species, for both flora and fauna. Projected future conditions concluded that Lost Lagoon is prone to stratification and higher temperatures, which is expected to further water impairment including, increases in NH3 and toxic algae blooms. To mitigate this trajectory, a systematic restoration plan was developed to reintroduce tidal flushing into Lost Lagoon from Coal Harbour’s western basin, thereby restoring the degraded ecosystem into a diverse coastal saltmarsh. Hydrogemorphology and flow rates were estimated and as a result a 1.3-m wide water channel was recommended. A planting and long-term monitoring plan that will aid in revitalization of a coastal saltmarsh was developed, alongside a preliminary project budget and schedule. The project feasibility and public response were discussed as constraints, with emphasis on furthering this proposed restoration plan with professional engineering, and First Nations and public consultation., ecological projections, restoration, urban wetland, saltmarsh, intertidal ecosystems
Sturgeon Bank marsh recession: A preliminary investigation into the use of large woody debris as a tool for restoring a degraded foreshore marsh
Large woody debris removal has been ongoing in the Fraser River Delta since the late 1800’s. I investigated how offshore winds and the absence of large wood may have contributed to the recession of the Sturgeon Bank Marsh. I suggest large wood increases marshland resilience and promotes new marsh establishment by attenuating wave energy, decreasing sediment mobilization, deterring herbivory, and promoting the establishment of vegetated islands from which the marsh can expand. I analyzed historical wind data for patterns in offshore wind duration and installed several pieces of large wood onto the tidal flats of the Sturgeon Bank. I developed a technique for anchoring wood in the intertidal and give my recommendations for further development. Finally, I conclude the recession of the Sturgeon Bank Marsh was the result of multiple interacting stressors and coin the term keystone structural element to describe the function of large wood within a foreshore marsh., large woody debris, keystone structural element, marsh recession, ecological restoration, wave sheltering, coastal marsh
Using 10-years of population monitoring data to assess breeding productivity of the Oregon Spotted Frog (Rana pretiosa)
Relationships between changing environmental variables and amphibian populations have been understudied. Yet, alterations to temperature and precipitation have been suggested as contributors to the decline of some pond-breeding species, such as the Oregon Spotted Frog (Rana pretiosa). R. pretiosa has been classified as the most endangered amphibian in Canada, yet the cause for its decline is unknown. Therefore, this paper examined associations between temperature and precipitation, and R. pretiosa population trends, using a 10-year data set from two breeding populations in the Lower Mainland of British Columbia. Timing of oviposition was positively related to higher temperature and increased precipitation within both populations (p<0.05). No statistical relationship was determined between egg mass productivity and temperature or precipitation; however, this paper proposes that further research, consistent protocols and longer study periods, is necessary in order to determine environmental variables as possible predictors of population success. This paper recommends the evaluation of breeding success through survivorship studies, as such methods provide insight into productivity as the primary determinant for population recruitment. Further, ecological restoration efforts can be implemented to help ameliorate negative consequences climate change poses on reproductive success., amphibian, climate change, conservation, ecological restoration, endangered, population dynamics, population monitoring, survivorship