Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Assessment of an urban floodplain reconnection project: A case study from the Mamquam River basin, BC.
Dikes and culverts have limited access to off-channel rearing habitats important to juvenile coho salmon (Oncorhyncus kisutch). This study assessed the success of a floodplain reconnection project in Squamish, BC, at providing rearing habitats. Recommendations on restoration priorities within the area were also provided. A single-season, multi-scale occupancy model was used to estimate the probability of occurrence and detection of juvenile coho during the summer. Regression models were used to assess water and habitat quality and identify relationships with juvenile coho metrics. Culverts were also scored for fish passage. The results of this study indicate that the reconnection project was overall successful. Coho non-detections occurred in areas with poor dissolved oxygen and culvert passage issues. Restoration actions should focus on improving water quality in these areas, and protection of areas of high CPUE. Positive relationships between stream productivity and coho metrics indicates the importance of future studies on macroinvertebrate supply., coho salmon, escape cover, rearing habitat, floodplain reconnection, urban channels, Mamquam River
Breeding waterfowl use of restored wetlands in the Cariboo region of British Columbia
This study investigated effects of wetland size and emergent vegetation cover on breeding waterfowl and young at 12 restored wetlands in the Cariboo region of British Columbia. Repeated ground surveys were conducted throughout summer 2019 to determine total abundance, density and species richness of waterfowl. Surveyed wetlands varied in size and emergent cover. Large (16-19 ha) wetlands had greater breeding total abundance and lower breeding and brood densities than smaller wetlands. Total abundance of breeding waterfowl and young were highest when wetlands had less than 60% emergent cover. Previous studies suggest that high densities of waterfowl decrease young survival. Restorations created to benefit several species of breeding waterfowl may want to restore wetlands that are large (>16 ha) and have less than 30% emergent vegetation cover. These wetlands had higher total abundances and lower densities than other categories studied, however, certain species may depend on smaller wetlands which should be researched further., Cariboo region, wetland restoration, breeding waterfowl, emergent vegetation
A climate adaptation plan: Identifying thermal refugia for salmonids in the Tsolum River
Stream temperatures in the Pacific Northwest are increasing due to climate change, resulting in thermal stress for salmonids. Groundwater is a cooler source of water into streams, providing thermal refugia. The goal of this Applied Research Project was to identify groundwater input areas in the Tsolum River, using temperature loggers to trace the thermal signal of groundwater. A total of 28 water temperature loggers and 2 air temperature loggers were deployed within the watershed in the summer of 2019. Results showed that 12 sites may be influenced by groundwater input. Restoration/management actions such as riparian planting, gravel bar live staking, and restrictions on groundwater withdrawal are recommended to decrease stream temperatures. This study demonstrated that temperature loggers can be deployed within streams to identify areas of groundwater input. The identification of thermal refugia within the Tsolum River and other salmonid-bearing streams will help to protect salmonids from climate change impacts., climate adaptation, thermal refugia, Tsolum River, groundwater
Drivers of humpback whale movement in Boundary Pass, British Columbia
The Salish Sea is critical habitat for several whale species including the humpback whale (Megaptera novaeangliae). Boundary Pass is part of the Salish Sea and connects the Pacific Ocean to several commercial shipping ports in the Pacific Northwest Region of North America. Since 1997, the number of Humpback whales continues to increase in this area, meanwhile the number of vessels is also increasing such that Boundary Pass is among the busiest shipping routes in the region. This high vessel traffic in the area leads to acoustic disturbances that degrades whale foraging opportunities for humpback whales. Commercial vessels transporting goods through whale habitat causes an increased risk of vessel collisions with humpback whales. Humpback-whale movements in Boundary Pass was recorded through systematic scan surveys conduction from a vantage point between June and August. Whale occupancy was compared to oceanographic variables and vessel presence. We found humpback whales were most likely to be present during ebb tides of speeds of -2 m/s under the influence of low tides and also whales were active in areas overlap with shipping lane in the area. Based on our founding in the area about humpback whale connection with biophysical properties of region I hypothesized that whale distribution in area and it relation to low tide and ebb current is most probably under the influence of food abundance in those periods of time. This study concludes with policy recommendations for improving humpback whale foraging grounds by reducing acoustic harassment and risk of ship strikes in the Boundary Pass., Humpback whale, movements, oceanographic variables, Boundary pass, Salish sea, Vessel strike, tide, currents, SST, salinity
An ecological restoration plan for a weedy field at the University of British Columbia Okanagan
Grassland ecosystems are rare, in decline, and support a multitude of at-risk species in British Columbia. At the University of British Columbia Okanagan in Kelowna BC, a 3.3 ha site at the entrance of the campus is outlined as Okanagan grassland in campus design plans but currently lacks native bunchgrass communities. The goal of this restoration plan is to return grassland plant communities to the site despite the pervasiveness of noxious weeds. I characterised site conditions through soil and vegetation surveys. Restoration recommendations include managing noxious weeds through mowing, hand-pulling and some herbicide application. The site will be replanted with bunchgrass vegetation, two pockets of ponderosa forest, and two types of shrub communities. A walking path, signage, and two xeriscape gardens will also be included to control human use of the landscape. Long-term monitoring will be incorporated into classroom curricula to tie monitoring to learning opportunities., Grassland, exotic plants, Noxious weeds, urban restoration, restoration plan
The effect of nitrogen fertilization on the physiology and morphology of Sphagnum capillifolium in an ombrotrophic bog
Degraded peatlands release 100-200 g-CO2 eqv. m-2 yr-1 in net emissions and account for more than 10% of global CO2 emissions. The success of bog restoration is dependent on creating suitable moisture conditions for the donor material to establish, propagate, and develop a new layer of Sphagnum that has hydrophysical and water retention properties similar to natural peatlands. Techniques to improve moisture retention during the transplant process and increase water holding capability of the restored Sphagnum layer have been identified as an area of bog restoration that requires more research. Samples were collected from plots fertilized with six different nitrogen treatments at Mer Bleue Bog in Ottawa, Canada. Net CO2 assimilation, fresh weight, dry weight, water content, and dissolved nutrient measurements were made to determine the potential effectiveness of incorporating nitrogen fertilization into the North American approach to peatland restoration. High levels of nitrogen fertilization exerted deleterious effects on individual morphology, growth density, water holding and retention capacity, CO2 assimilation, and nutrient dynamics and decomposition. Fertilization with 1.6 g m-2 yr-1 of ammonium has the potential to ameliorate water retention capacity through more robust individual morphology and denser growth patterns and increases carbon assimilation and photosynthetic capacity. The results indicate integrating low levels of ammonium fertilization into bog restoration techniques can potentially increase restoration success., water content, carbon dioxide assimilation, growth density, peatland restoration, ammonium, nitrate
The effect of time-since-burning and hand-pulling on the growth and stem density of Centaurea stoebe and Linaria dalmatica
Prescribed burning and hand-pulling are used to manage invasive plants but treatments can deferentially affect species. My objective is to determine the effect of time-since-burning and hand-pulling on stem density and growth of Centaurea stoebe (spotted knapweed) and Linaria dalmatica (Dalmatian toadflax). Prescribed burns occurred in March 2015 and 2016, while hand-pulling occurred in April and May of 2017. I conducted vegetation surveys in May, June, and July 2017. Growth rates differed among treatments and by species. Centaurea stoebe was not detected in the prescribed burn treatments. Hand-pulling increased stem density of C. stoebe, but individuals were smaller and 60% remained as basal rosettes compared to control. Linaria dalmatica were significantly taller in the burn treatments, and the stem density of L. dalmatica was greater in the prescribed burn and hand-pull treatments compared to control. The tallest L. dalmatica occurred in the 2-year post-burn site, indicating a time-since-burning interaction., invasive plants, prescribed burning, hand-pulling, Cetaurea stoebe, Linaria dalmatica
A historical marsh vegetation composition comparison between five Fraser River foreshore marshes
A full composition study of some key Fraser River foreshore marshes, Boundary Bay, Brunswick Point, Westham Island, Lulu Island, and Sea Island, had not been done in several decades, during which a large-scale marsh recession event occurred at two of the marshes. The vegetation composition is measured in this study with relation to soil water, soil pore water salinity, and elevation. The results in this study show a shift in the vegetation composition in some areas of the Lulu Island marsh, with the other marshes remaining relatively similar to historical data. The plant species’ tolerance to soil water, soil salinity, and elevation vary in each marsh, illustrating the need for individualized restoration plans for each marsh. Conserving and restoring these marshes is critical in light of the many changes in the Fraser River delta, including sea level rise, increased geese populations, altered sediment regimes, and urbanization., Fraser River, brackish marsh, salt marsh, vegetation composition, salinity, elevation
Identifying temporal trends and mechanisms for successful reforestation on former agricultural land
This study investigates the outcomes of restoration efforts completed on retired agricultural land in Southwest Ontario. Sites acquired by the Nature Conservancy of Canada were planted to kickstart succession to native deciduous forests, but the results of the plantings are mixed. Analysis of soil conditions indicated that low levels of soil organic carbon were correlated to low water content and high density unfavourable for plant growth. Analysis of remotely sensed imagery was done to assess and compare vegetation cover to reference conditions at Walpole Island First Nation. Analysis revealed that successful restoration was dependent on multiple soil characteristics, but conditions correlated to higher total organic carbon favoured greater vegetation cover. Remote sensing data revealed that succession towards tree canopy development was accelerated compared to passive restoration, and a shaded understory was established approximately 8-12 years following restoration. Future work can expand on succession and the effects of other restoration treatments., Soil, Reforestation, NDVI, Agriculture, Restoration, Secondary succession
Investigation of the effects of soil and biochar in a rain garden on stormwater quality improvement
Stormwater runoff from parking lots often contains a variety of elements and compounds in different forms and concentration that may pose risks to biota in receiving aquatic systems. Heavy metals including lead (Pb), cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) are of particular concern in such runoff due to their prevalence, toxicity to aquatic organisms and persistence in environment. The ability of commercially available biochar to remove pollutants of concern through column treatments was assessed in this research. Different treatments of biochar were considered and their ability to remove pollutants was compared to soil. The biochar (Emergent and Cantimber) used in this study showed a significant higher molecular weight PAHs removal ability compared to soil and followed the order of Cantimber > Emergent > soil. The effects of heavy metals and PAHs on aquatic organisms and plants degradation can be mitigated by amending the soil media with biochar in the bioretention cells such as raingarden. This could be applied in real world where stormwater runoff can be treated before entering into river or stream therefore cutting the need of future restoration., Emergent Biochar, Cantimber Biochar, Parking lot stormwater, Low impact development, Heavy metals, PAHs, Constructed wetlands
Mapping floodplain fish habitat in the heart of the Fraser River and restoration options for impacted attributes on selected large mid-channel islands
The purpose of this project is to develop an ecological restoration plan for degraded habitats on mid-channel islands in the lower Fraser River. The study focuses on Herrling, Carey, and Strawberry islands, large mid-channel islands located in the gravel reach between Mission and Hope, British Columbia. These islands are known to be critical off-channel rearing habitat for many fish species including the threatened White Sturgeon (Acipenser transmontanus) and interior and lower Fraser watershed Chinook Salmon (Oncorhynchus tshawytscha) populations. These islands are also home to many riparian plant and animal species. The flood-pulse concept (FPC) states that seasonal fluctuations in water levels for streams such as the Fraser River contribute substantially to the ecological function of the floodplain ecosystem where this phenomenon occurs. This often results in improved growth and survival rates for fish species that rely on a laterally-moving littoral zone of inundation. This phenomenon is thought by many to be the key to a properly functioning ecosystem in the lower Fraser River. Using a Digital Elevation Model (DEM) for the Fraser River between Hope and Mission, British Columbia, freshet flows (high water elevations) are presented to define the spatial extent of over-bank watering of Strawberry, Carey and Herrling islands. This over-bank watering provides lateral connectivity to floodplain islands. Based on extensive sampling in other studies, this lateral movement results in the creation of high-quality juvenile fish rearing habitat. A restoration plan is presented for those areas of Strawberry, Carey and Herrling islands degraded by recent land clearing for agriculture where they overlap sections defined as fish habitat from the spatial analysis., gravel reach, mid-channel islands, floodplain fish habitat, flood pulse concept, juvenile Chinook Salmon, lower Fraser River, White Sturgeon
A meta-analysis of North Shore streams: maximizing the effect of installed rain gardens through strategic placement
A meta-analysis using pre-existing data was done for streams in the North Shore of Vancouver, British Columbia. Parameters considered were chemical concentrations from stormwater input including: heavy metals concentrations (Copper (Cu), Zinc (Zn), Cadmium (Cd), Lead (Pb)) and nutrient concentrations (Nitrate (N03-) and Orthophosphate (P04 3-))_ Chronic toxicity guideline exceedance based on the British Columbia Approved Water Quality Guidelines was found in all 94% of stream systems for Cu and 44% of stream systems for Zn. Heavy metal concentrations were found to be positively correlated with percent impervious surface cover in the watershed, with the strength of the correlation being metal-dependent. Three sites within the study had the highest levels of both Cu and Zn. These watersheds (Upper Keith Creek, Maplewood Creek, and Mackay Creek) were prioritized for rain garden installation. Rain garden building specifications to remediate for Zn and Cu were recommended and included addition of mulch layer, minimum depth of topsoil (30 cm), and vegetating with plants with high potential for biofiltration and/or phytoremediation., Impervious surface cover, Stormwater, Rain garden, Green infrastructure, Heavy metal analysis

Pages