Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Comparing soil nematode composition in bluebunch wheatgrass P. spicata root to the occurrence of invasive plants C. stoebe and L. dalmatica
The viability of native bunchgrass ecosystems throughout the PPxh BEC subzone and in Kenna Cartwright Park (KCP) in Kamloops B.C. are under threat by invasive plants. Once established, invasive plants are difficult to eradicate and can predominate the landscape. I collected soil samples from a relatively undisturbed bunchgrass reference site composed of native bluebunch wheatgrass (Pseudoroegneria spicata), and I collected soil samples from a bunchgrass site occupied by the invasive plants, spotted knapweed (Centaurea stoebe) and dalmatian toadflax (Linaria dalmatica), to compare the soil nematode communities. My results reveal differences in the community-level biodiversity and abundance of soil nematodes between sites. The Maturity Index and the Plant Parasitic Index indicate that the native bunchgrass site had a “Structured” soil food web and that the site occupied by invasive plants had a “Basal” soil food web. My results indicate soil nematodes are useful as bioindicators of soil properties and these data provide useful criteria to help prioritize sites for ecological restoration., Nematology, Invasive plants, Pseudoroegneria spicata, Biological indicators, Ecological restoration
Ecological restoration options for Clear Lake and South Lake (Riding Mountain National Park), Manitoba
Options for ecological restoration are discussed for the Clear Lake – South Lake complex of Riding Mountain National Park, Manitoba. This project consisted of a) a review of studies conducted on Clear Lake and South Lake and b) a stream water quality sampling program. The review of previous studies was to gain an in-depth understanding of historical processes which shaped Clear Lake and South Lake. Previous condition, current condition and ecological stressors are all identified based on literature from Riding Mountain National Park. The stream water quality sampling program identifies major sources of nutrients into Clear Lake. Ecological restoration options pertain specifically to the Clear Lake – South Lake complex. South Lake restoration options include supplemental planting, dredging and chemical treatments. A novel technique designed to disrupt wind driven nutrient loading is also discussed. These methods are designed to return the South Basin to a macrophyte dominated system. Addressing hypolimnetic oxygen deficiency, two forms of hypolimnetic aeration are discussed to improve water quality in Clear Lake including a ‘Full lift’ design as well as a Speece Cone. Three options regarding the isthmus and connectivity between Clear Lake and South Lake are examined including a fishway installation and a wattle fence installation.
The effect of prescribed burns on soil characteristics and plant communities in Garry Oak ecosystems. A case study on a three-year post-burn site on Tumbo Island, Gulf Islands National Park Reserve
This research project evaluates the outcomes of returning prescribed fire to endangered Garry oak meadows as a restoration treatment. This project was done in partnership with Parks Canada and involved a case study on a three-year post-burn site on Tumbo Island in the Gulf Islands National Park Reserve. Soil chemical properties were analyzed three years post burn in the summer of 2019 and compared to pre and post-burn vegetation survey results. Analysis identified beneficial changes in soil chemistry still present three years post treatment. Invasive species occurrences increased across the site, regardless of treatment, and around half of the invasive species occurrences were recorded on burn treatments areas in 2018. Prescribed burns on shallow soil Garry oak meadow sites showed beneficial outcomes for soil chemistry, reduced conifer encroachment, increased diversity and Arbutus (Arbutus menziesii) seedling recruitment. These findings aid in determining restoration plans for shallow soil Garry oak meadows, highlighting the numerous benefits from prescribed fire, while also suggesting that additional treatments in conjunction with prescribed fire will be needed to control invasive plants when planning to restore these ecosystems., shallow soil, Garry oak meadows, restoration, prescribed fire, soil nutrients, invasive plant species
The effect of vegetation structure and abiotic variables on oviposition-site selection by amphibians
Assessing restoration success for pond-breeding amphibians frequently focuses on hydrology, water quality and vegetation, while neglecting the requirements of amphibians that use the restored areas for breeding. Both biotic and abiotic conditions can influence oviposition-site selection of amphibians that do not provide parental care. This study examines how vegetation structure and abiotic variables affect oviposition-site selection by amphibians. The goal of my study was to better understand the requirements of pond-breeding amphibians. In 2017, I surveyed egg masses in four ponds at the Sunshine Coast Botanical Garden in Sechelt, B.C. I identified 667 egg masses of four native amphibian species that varied in abundance and species richness among ponds. I recorded five biotic variables (i.e., vegetation cover, vegetation type, stem density, stem diameter, and canopy closure) and two abiotic variables (i.e., water depth and solar radiation) at egg-mass sites and random sites where no egg masses were detected. Logistic regression analysis with backward elimination revealed that stem count (p = 0.008) and water depth (p = 0.0001) significantly influenced oviposition-site selection. The results also showed that higher stem density and shallower water depth increased the likelihood of egg masses being present. My study indicated that quantifying stems in the water column characterized vegetation density better than estimating percent cover of vegetation. Shallow areas that have structurally complex vegetation might provide an advantage for the offspring by increasing refuge, food resources, and favourable thermal conditions for egg development. Hence, restoration projects could incorporate vegetation structure and shallow areas in their pond designs to potentially increase the abundance and diversity of amphibian communities, thereby contributing to successful restoration projects., ecological restoration, amphibians, oviposition, Rana aurora, Pseudacris regilla, Ambystoma gracile, Amystoma macrodactylum, vegetation structure, abiotic variables
Experimental control of Spotted Knapweed (Centaurea stoebe) within critical habitat of the endangered Half-moon Hairstreak Butterfly (Satyrium semiluna)
Spotted knapweed (Centaurea stoebe) is a non-native invasive forb found throughout North America that suppresses native vegetation and reduces biodiversity. The designation of Blakiston Fan (Waterton Lakes National Park, Alberta) as critical habitat for the endangered half-moon hairstreak butterfly (Satyrium semiluna) brought forward concerns of the effects of knapweed management practices on the hairstreak and its native larval and nectar host plants. This pilot study used a randomized complete block design to examine the within-season change in cover of spotted knapweed and silky lupine (Lupinus sericeus) in response to herbicide application and two timings of manual removal (i.e., mid-June and late-July). This study also examined changes in the vegetation community and relative abundance of hairstreak butterflies across the fan. Significant treatment effects (p= 0.006, f3, 12= 6.89) were seen in the change in percent cover of spotted knapweed two weeks post-treatment between herbicide and control plots. There was no significant difference in the change in lupine percent cover among treatments (p= 0.075, f3, 12= 2.96). Cover of native host plants and hairstreak abundance were greatest in the south fan. Increases in knapweed cover were lowest in the south fan. Based on these results, a triaged management plan was recommended with restoration efforts focused on the south fan. Recommendations for the south fan include selective herbicide application to limit spotted knapweed distribution, closure of horse trails, and a native planting and seeding experiment. Management of the north and central fan was recommended to focus on the control of knapweed monocultures through intensive herbicide application and establishing biological control agents for long-term control. Further research of the hairstreak lifecycle is needed to understand the primary mechanism of decline, as well as, research into the response of native nectar host plants to knapweed control. Monitoring the response of the vegetation community and relative abundance of hairstreaks following the Kenow fire of 2017 is key in prioritizing restoration actions for Blakiston Fan., vegetation mapping, species at risk, host plant, invasive species, ecological restoration, Aminopyralid
Factors limiting the expansion of black-tailed prairie dog colonies at their northern extent
Prairie dogs (Cynomys ludovicianus) are considered a keystone species due to their ecological role in maintaining the prairies. In Canada, they are federally listed as a threatened species. This study was conducted to identify the limiting factors to the expansion of prairie dog colonies in Grasslands National Park, Saskatchewan. I tested different hypotheses to compare landforms, vegetation, and soil characteristics in three treatments: consistently occupied (Consistent), inconsistently occupied (Inconsistent), and never occupied (Buffer) by prairie dogs. I sampled four prairie dog colonies (blocks) from 17 July 2019 to 28 August 2019 using a randomized complete block design. I used ANOVA to test variables for significant differences among treatments. My results showed that hills, water channel, shrublands, grass cover, shrub cover and vegetation height classes (>30 cm) were significantly higher (p <0.05) in Buffer compared to Consistent and Inconsistent. Shrubs and tall vegetation should be mowed down to enhance the expansion of prairie dog colonies for restoring their population., restoration, prairie dogs, Cynomys ludovicianus, colony expansion, barriers, habitat use
Hypolimnetic upwelling in coastal embayments of Lake Ontario; implications for restoration
Coastal wetlands are an important ecosystem in the Great Lakes basin, providing spawning grounds and warm-water refuge for numerous fish and benthic invertebrate species during cold water upwelling events. Urbanization along the northwestern shore of Lake Ontario has led to a depletion of coastal wetlands, replacing them with artificial embayments. Three artificial embayments, the Credit River estuary, and one coastal marsh in Mississauga, ON were studied to determine if the artificial embayments function as warm-water refuge during upwelling events. Temperature loggers were placed in each study site and temperature was recorded every 15 minutes from July to October 2017. Upwelling events were isolated from the data, and frequency, magnitude, and duration of upwelling was determined. Most study sites had a frequency of 4 upwelling events throughout the study period. The average duration of upwellings varied from 30 to 70 hours, and the average temperature change ranged from -7.1ᵒC to -11.9ᵒC. All of the study sites seemed to buffer upwellings by reducing the magnitude of temperature change and increasing the duration of upwelling events to varying degrees. These results will inform the creation of future wetlands, restoration of existing embayments, and conservation of Great Lakes coastal wetlands., ecological restoration, coastal embayments, coastal marsh, upwelling, warm-water refuge, Lake Ontario
Investigating regeneration in a raised ombrotrophic bog after peat extraction
Burns Bog is a raised ombrotrophic bog in Delta, British Columbia and faced with myriad disturbances. This study is focused on the impact and restoration of peat extraction by the Atkins-Durbrow Hydropeat method. Depth to water table, relative abundance and distribution of vegetation, and the degree of peat decomposition at consistent-depth intervals were investigated to elucidate the status of passive and active ecological restoration in three fields previously harvested for peat approximately one decade apart and compared to a fourth unharvested field. Summary statistics, Redundancy Analysis, and regression were used to compare restoration status and trends in hydrology, vegetation composition, and peat accumulation. A lag period between cessation of harvest and implementation of restoration, coupled with rapid anthropogenic climate change, serve as impediments to restoration here. Intervention in the form of improved rainfall retention, assisted recolonization, and the introduction of nurse species are recommended to improve bog function and resiliency., Atkins-Durbrow Hydropeat method, Ditch blocking, Ecological restoration, Peat extraction, Raised ombrotrophic bog, Burns Bog
Investigating the effect of salinity, elevation, redox potential, and geese herbivory on planting success in a Pacific Northwest salt marsh
The MacKay Creek Estuary, is a severely altered estuarine ecosystem located within an active international port in Vancouver, British Columbia. Several elevated salt marsh terraces were constructed as part of a larger restoration project within the MacKay Creek Estuary. Site visits conducted in 2018 revealed 75% of the terrace surface area failed to establish salt marsh vegetation. Significant difference in soil pore-water salinity, oxidation reduction (redox) potential and tidal elevation were found between vegetated and unvegetated portions of the terraces. Additionally, exclusion from Canada Geese (Branta canadensis) herbivory increased total percent cover and colonization of the adjacent unvegetated area. The combination of soil parameters and herbivory, as well as potential interactions between factors may be responsible for the lack of vegetation progression within the constructed salt marsh terraces at MacKay Creek Estuary., restoration, salt marsh, redox potential, pore-water salinity, MacKay Creek, Fraser River, estuary, Canada geese
Plant facilitation effects as a potential restoration tool in riparian ecosystems in Southwestern British Columbia
This study began to investigate potential facilitative effects among shrub species in riparian ecosystems in southwestern British Columbia. I ran two concurrent studies. Six plots for each of four treatments were established at the Coquitlam River Wildlife Management Area. The first two treatments compared the survival, growth, flowering, and herbivory rates of planted twinberry seedlings in plots where the shrub layer was removed to plots where it was not. The other two treatments compared the survival, growth, leaf loss, flowering and herbivory rates of snowberry plants in plots where the salmonberry upper shrub layer was removed to those where it was not. No significant differences between the measured parameters in any of the treatments were found. These results are discussed in the context of the riparian forest ecosystem and current facilitation theory. The results are then used to inform an ecological restoration plan for the Suwa’lkh School Forest., Facilitation, Riparian forests, Native vegetation, Symphoricarpos albus, Lonicera involucrate, Rubus spectabilis, Ecological restoration
Restoration of salmonid spawning habitat in the Upper Serpentine River
Over the past half century, urbanization has caused drastic changes to the hydrology and geomorphology of streams and rivers. The Serpentine River is a low-elevation, rain-dominant river located in the City of Surrey, British Columbia. Over the years, urbanization of the watershed, particularly in the upper reaches, has degraded what once was high quality spawning habitat for five salmonid species. The current project is an evaluation of previous restoration efforts at seven study sites and a restoration plan to effectively increase spawning habitat in the Upper Serpentine River. Grain size analysis of the study sites found up to 57% fine sediment in the subsurface particles, attributing to siltation rates of 1.2-1.6 kg/m2/day. Erodible grain sizes at the study sites ranged from 29-164 mm, which mostly exceeded the median size of spawning gravel. These results were verified with a tracer rock study, which together concluded that instream structures were required to reduce tractive forces and increase gravel retention. Newbury weirs, or constructed riffles, were proposed as treatments because their hydraulic characteristics increase flow resistance, promote gravel retention, and create intergravel flows. Newbury weirs involve large diameter rocks spanning across the entire stream, causing accumulation of gravel on the upstream side and pool formation downstream side. Substrate scoured at the pool will be deposited at the tail end of the pool, creating spawning habitat in accelerating and downwelling waters. Bank stabilization using dense live staking with a protective rock toe key was prescribed to reduce further channel incision and siltation. In the longterm, watershed-level priorities including passage through the Serpentine sea dam, monitoring for urban contaminants, and installation of green infrastructure was recommended. The proposed treatments are relatively inexpensive, and if successful, will reduce repeat addition of spawning gravel and increase salmonid production in the Serpentine River. However, the value of the current project extends beyond fish productivity estimates. Monitoring data from restoration works can be used to inform future urban stream restoration projects and contribute to the continual improvement of restoration techniques. The effects of restoration on not only sediment form (ie. gravel depth and size) but also processes (ie. sediment scour and fill) should be investigated in the field to verify theoretical models.
A restoration strategy to avert the projected ecological, social and economic risks of Lost Lagoon in Stanley Park, British Columbia
The coastal saltmarsh that once made up Lost Lagoon was isolated into a freshwater impoundment to enable the construction of the Stanley Park Causeway in 1916. Water chemistry, water nutrients, and subsurface sediment were collected in August to October 2017, and it was concluded that Lost Lagoon is experiencing, low DO (average 6 mg/L), high salinity (0.9 ppt), high nutrient loading (TP 0.1 mg/L and TN 0.9 mg/L) and has elevated heavy metals (Cd, Cu, Ni, Pb, and Zn). A general biotic inventory was conducted and results indicated a lack of native species diversity and presence of invasive species, for both flora and fauna. Projected future conditions concluded that Lost Lagoon is prone to stratification and higher temperatures, which is expected to further water impairment including, increases in NH3 and toxic algae blooms. To mitigate this trajectory, a systematic restoration plan was developed to reintroduce tidal flushing into Lost Lagoon from Coal Harbour’s western basin, thereby restoring the degraded ecosystem into a diverse coastal saltmarsh. Hydrogemorphology and flow rates were estimated and as a result a 1.3-m wide water channel was recommended. A planting and long-term monitoring plan that will aid in revitalization of a coastal saltmarsh was developed, alongside a preliminary project budget and schedule. The project feasibility and public response were discussed as constraints, with emphasis on furthering this proposed restoration plan with professional engineering, and First Nations and public consultation., ecological projections, restoration, urban wetland, saltmarsh, intertidal ecosystems

Pages