Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

A contrast of two novel deterrents of goose herbivory at Westham Island foreshore tidal marsh
Since the 1980s, at least 160 ha of marsh vegetation has died off in Sturgeon Bank and Westham Island, located within the Fraser River Estuary. Proposed causes for this marsh recession include sediment deficit, relative sea-level rise, increased salinity, and goose herbivory. At Westham Island, the loss of tidal marsh vegetation is locally distinct in that it occurs in a closed polygon shape versus along the leading edge of the marsh, suggesting that goose herbivory is a principal cause. Goose herbivory on tidal marsh vegetation has become a global problem as many geese populations are becoming hyperabundant. In the Fraser River Estuary, Canada goose (Branta canadensis) and snow goose (Anser caerulescens) numbers have been increasing exponentially. I conducted a field experiment, testing two novel goose herbivory deterrents at Westham Island’s foreshore tidal marsh: metal and snow fencing placed flat against the substrate. I used a randomized complete block design with six replicates and three treatments: metal fencing, snow fencing and control (no fencing). Each treatment's effectiveness was assessed by monitoring changes in common three-square bulrush (Schoenoplectus pungens) every two weeks throughout the summer season (June-September 2022) in terms of stem density, percent cover, and percent of stems grazed. Results indicated that there was no difference in stem density, percent cover, and percent of stems grazed between the two fencing types. However, compared to bulrush in the controls, both snow and metal fencing treatments yielded a higher stem density and percent cover (x̄% difference = 82.9%, 53.1%, respectively) as well as a lower percent of stems grazed. These results suggest that both fencing materials are equally effective at deterring goose herbivory in a tidal marsh. Additional assessments are needed to clarify whether this technique can be scaled up to promote marsh recovery throughout the entire area of recession., tidal marsh recession, goose herbivory deterrents, goose management, Canada geese, common three-square bulrush, snow fencing, chain-link fencing
Groundwater elevation and chemistry at Camosun Bog, British Columbia, and implications for bog restoration
A bog is a type of wetland with a high water table, acidic soil and is nutrient poor. Camosun Bog is the oldest bog in the Lower Mainland of British Columbia, and remained undisturbed until development of the surrounding residential neighborhood caused changes to its groundwater conditions, threatening its current persistence. The goal of this study is to provide an updated examination of Camosun Bog’s groundwater conditions and to discuss relevant bog restoration measures. Groundwater elevation and chemistry (pH, conductivity, nitrogen and phosphorus) were monitored for several months in 2019. Results indicate that current groundwater elevations are lower in Camosun Bog than they were thirty years ago, especially in the north and northeast regions. Locations in the north and center parts of the open bog experienced groundwater nitrogen enrichment and higher pH, indicating that raising the water table should be the main goal of restoration for Camosun Bog.
Impacts of roads and cranberry agriculture on bog wetland hydrology with restoration recommendations for Langley Bog
Bog wetlands store a disproportionate amount of carbon for their size, making their conservation an important part of climate change mitigation. The goal of this project is to investigate how roads and agriculture impact the hydrology and vegetation composition of Langley Bog and to provide restoration recommendations. Langley Bog, in Langley Township, BC, is a formerly mined peatland with a fill road running through the center and surrounded to the north and west by cranberry farms. From November 2020 to November 2021, depth to water table and pH were measured monthly at nine wells. Twelve vegetation transects were completed in July 2021. Sites adjacent to the road were correlated with a decrease in summer water level, while sites adjacent to the cranberry farms were correlated with an increase in spring pH levels. A positive relationship was found between an increase in water-table level and percent cover of wetland obligate species. Roads may be lowering the water table through subsidence and drainage. The cranberry farms may be increasing the pH through the deposition of fertilizer. These impacts may have been exacerbated by the unusually dry 2021 summer season. To raise the water table, tree and road removal is recommended to restore lateral flow and decrease evapotranspiration. Culverts installed under the primary fill road will provide additional hydrologic connectivity. Building a berm at outlet points will also help prevent water loss, keeping a higher water table. To increase carbon sequestration, Sphagnum mosses are to be reintroduced to denuded areas in Langley Bog. Tree removal will help in moss establishment by maintaining open bog conditions free from shading. Existing rare ecosystems present in Langley Bog would benefit from the removal of point source pollutants and invasive species on the site. Given the urgency of climate change, restoring the functionality of Langley Bog and protecting the existing stored carbon is a practical and achievable way to move Metro Vancouver a step closer to carbon neutrality., peatlands, ecological restoration, water levels, pH, sphagnum
Marsh resiliency strategies in the face of sea-level rise: Pilot project opportunities for Fraser River delta tidal marshes
Coastal wetlands are naturally resilient to changing sea levels; however, as rates of sea-level rise increase, the interaction between changing sea-level and ongoing human impacts will be a major driver in future coastal tidal marsh stability. My goal is to provide decision makers with recommendations to increase the resilience of the Fraser River delta front tidal marsh communities over the twenty-first century. I conducted a literature review to (1) examine the current knowledge base regarding effects of sea-level rise on tidal marshes and (2) identify current ecosystem-based adaptation strategies for increasing tidal marsh resilience to sea-level rise. Based on this review, recommendations are made for strategies that could be used to increase tidal marsh resilience in the Fraser River delta. Recommendations include (1) initiating delta-wide marsh accretion modeling to assess tidal marsh vulnerability under possible sea-level rise scenarios and (2) implementing sediment augmentation pilot projects for both direct (e.g., layered sediment lifts) and indirect (e.g., mud motor) sediment augmentation strategies to test ecosystem based adaptive management strategies as part of an adaptive management framework.