Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Alaksen National Wildlife Area: Reservoir suitability for the introduction of the endangered Western Painted Turtle
Alaksen National Wildlife Area located in Delta, BC is home to freshwater species in the former tidal marsh. The current agricultural landscape has left a legacy of high concentrations of heavy metals, trace amounts of organochlorine pesticides, and excess nutrients within the sediments and water of the brackish Fuller and Ewen Reservoirs. Arsenic and phosphorous exceeded Canadian water quality guidelines, while arsenic, chromium, copper, iron, manganese, nickel, and phosphorus exceeded sediment quality guidelines. There were trace pesticides known to be endocrine disrupters detected in the water and sediment, and combined low level toxicity effects are a concern. A preliminary ecological risk assessment on the metals was completed and the results indicate that there is a possibility of adverse effects for benthic invertebrates, but negligible risk for endangered Western Painted Turtles. However, compounding all the ecosystem stressors along with rising sea levels leads ANWA not an ideal place to introduce this species., © Darian Weber, 2019. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Western Painted turtles, ecotoxicology, risk assessment, agricultural reservoir, heavy metal, endocrine disruptors
Assessing the allelopathic effect of invasive phragmites australis on sida hermaphrodita and ammannia robusta; two species at risk in Southern Ontario
In Ontario, invasive Phragmites australis threatens to displace many species including the endangered species Sida hermaphrodita and Ammannia robusta. Germination and growth assays measured the effect of P. australis aqueous extracts from the leaves, rhizomes, and roots on S. hermaphrodita and A. robusta. Germination was inhibited by some of the treatments, but growth was not. The tissues inhibited germination differently for S. hermaphrodita (leaf> rhizome> root) compared to A. robusta (root> rhizome> leaf) indicating that the allelopathic effect was species-specific. However, the laboratory results show that allelopathic effects are weak. This result is consistent to the field study results showing an increase in S. hermaphrodita area and density over time. Results from this project inform management options by indicating which part of the plant needs to be targeted. In this case, all the tissues had some phytotoxic effects, indicating that biomass may need to be removed or long-term management implemented., Invasive Species, Species at Risk, Seed Germination, Seedling Growth, Allelopathy
Assessing the potential impact of English ivy (Hedera helix) on the arthropod community of Stanley Park
English ivy (Hedera helix) is a vine species that had been introduced to North America in colonial times. Extensive monocultures of English ivy and the attachment to other plants have been shown to impact native flora of North America. Its impact on native fauna has been overlooked. I sampled arthropods in six native plant plots and six English ivy plots in Stanley Park, British Columbia. A weekly collection of arthropods through pitfall traps was conducted from May to August 2019. There was no significant difference in arthropod diversity and total abundance of groups between native and ivy plots. Non-metric multidimensional scaling was used to show distances between beetle community compositions. There was a large overlap of beetle compositions despite three families found exclusively in native plots. Implications for managing and restoring English ivy of the park were discussed., NMDS, Hedera helix, Invasive species, Arthropods, Ecological restoration, Beetles as indicators, © Tianbi Wu, 2020. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author.
Biological soil crusts for reclamation of mine tailings
Research was conducted examining biocrust development on reclaimed mine tailings and testing amendments to enhance biocrust establishment. Three reclaimed Canadian mine sites were samples for biocrusts: Endako mine (BC), Brenda mines (BC) and Gaspe mines (QC). Sampling showed Cladonia sp. lichen dominating the lichen samples. Microbial biomass was seen to be lower in older biocrusts, correlated to carbon content and, higher in microbial or moss dominated biocrusts. Carbon fraction was higher than mineral soils while nitrogen fraction was closer to organic soils. The biocrust samples also showed higher Al, P, K, S and Mg concentrations but lower Fe concentrations, than the sub-surface tailings sand. Experiments with amendments on the exposed tailings of Gibraltar mines (BC), showed an enhanced chlorophyll response to inoculation, fertilization and partial shading. Use of an organic media significantly enhanced moss productivity. This research project demonstrates the potential to use biocrusts for reclamation on mine tailings facilities., © Shantanu Dutt, 2020. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author.
Blanket Creek Provincial Park weedy field restoration plan
A key management concern for provincial parks is the establishment of invasive species due to their impacts on native biodiversity. Within Blanket Creek Provincial Park there is a 0.24 ha heavily invaded field dominated by hawkweed species and spotted knapweed which developed after a series of natural and anthropogenic disturbances. Restoration actions are required to renew the ecological process of natural succession and shift the vegetation community from its current state to one dominated by native species. The aim of this project was to determine the current site conditions which will inform a restoration plan for the site and act as baseline conditions for future monitoring. This site assessment focused on the characterization of the vegetation and soil conditions. Restoration recommendations focus on promoting the development of a deciduous forest characteristic of the Interior Cedar-Hemlock biogeoclimatic ecosystem classification zone. The restoration recommendations include invasive species management, decompaction, fertilization, mulching, and the planting of native trees and shrubs., restoration, alternative stable states, invasive species, forest succession
Carbon sequestration and storage potential along the Trans-Canada Highway corridor in Chilliwack, BC
As of 2017, more than 4 billion people live in urban areas (Ritchie 2018). As people continue to move from rural to urban areas, the concentration of greenhouse gases (GHGs) in urban areas will continue to rise. However, this may be mitigated by increasing carbon sequestration by expanding urban forests (Baines et al. 2020). While the BC government has implemented reforestation projects on logged, provincial land, and has released a Community Toolkit for municipalities to increase their treed environments, there is still available land to be planted between the provincial and municipal land (Cullington et al. 2008). Trees are an important tool for CO2 sequestration and storage. The open landscapes of the Trans-Canada Highway right-of-ways presents an underutilized opportunity to increase the treed environment for carbon sequestration and storage along this open vehicle corridor. This project seeks to model the current carbon sequestration level and the carbon sequestration potential for different vegetation types along the Trans-Canada Highway and develop recommendations for revegetation plans to increase carbon sequestration along this heavily used vehicle corridor. The study site resides along a 20 km stretch of the Trans-Canada Highway in Chilliwack, British Columbia. This area was chosen as it is an agricultural community with very few treed areas. The area was split into the Chilliwack North Polygon (CNP) and the Chilliwack South Polygon (CSP) on ArcMap, on which a grid of 20 m by 20 m squares were laid, which is necessary for transferring the data collected in the field into i-Tree Eco v6.0 (n.d.). The program i-Tree Eco uses measurements, such as diameter at breast height (DBH) and ground cover class, taken in the field to estimate ecosystem services and structural characteristics of the Chilliwack area. Throughout the CNP and CSP areas, 12 were selected based on accessibility, safety, and site representation. The program i-Tree Canopy v7.0 (n.d.) was also used to bolster this information by estimating tree cover and tree benefits for the Chilliwack area through satellite imagery by randomly selecting 500 sampling points throughout the CNP and CSP areas. Grass surveys were conducted in 1 m by 1 m quadrats placed in an area representative of the selected 20 m by 20 m quadrat (i.e. a homogenous area that represents the majority of the vegetation in the plot). Grasses were identified on site to genus or species whenever possible, and their percent cover measured. Soil samples were also taken within the 1 m by 1 m quadrat within the first 15 cm. As these sample sites house anthroposols, sampling within the first 15 cm was selected to capture conditions in the root zone for plant growth. The soil samples taken were used to determine soil texture and soil pH for planting purposes. Finally, a review of highway management practices was done to identify areas where improvements can be made to increase carbon sequestration. Practical management suggestions are based on the results from the above-mentioned analyses. The program i-Tree Eco v6.0 (n.d) indicated that the CNP had the greatest carbon storage of 172,787.3 kg/ha, while the CSP had 15,270.8 kg/ha. The CNP is able to store 11,554.2 tonnes of carbon while the CSP was only able to store 546.1 tonnes of carbon. However, the CNP had an annual net carbon sequestration of - 57.2 tonnes/yr while the CSP has 2.5 tonnes/yr. Red alder (Alnus rubra) comprised 52.3% of tree species recorded and had the highest carbon storage of 6,322.7 tonnes, followed by bigleaf maple (Acer macrophyllum) with 3,186.0 tonnes, black cottonwood (Populus trichocarpa) with 1416.3 tonnes, western hemlock (Tsuga heterophylla) with 1155.6 tonnes, and paper birch (Betula papyrifera) with 19.7 tonnes. The annual net carbon sequestration of red alders however was - 2.2 tonnes/yr, while bigleaf maple had the highest with 3.7 tonne/yr. The program i-Tree Canopy v7.0 (n.d.) indicated that overall, there was 125.37 tonnes of carbon sequestered annually in trees within the CNP and CSP, with 3,734.34 tonnes stored. The ground cover composition of the CNP had a greater composition of shrub (61.1%) and tree (16%) compared to the CSP, while the CSP had greater plantable space (65.4%). This data was used to characterize the study area and model the current carbon sequestration and storage. New management strategies were proposed and native vegetation suitable for the study area was identified.
Ecocultural restoration of a Coastal Root Garden on Tl’chés (Chatham Island), B.C.
Tl’chés is the Lekwungen name for the Chatham Islands — an archipelago located southeast of Victoria, British Columbia. Tl’chés is a central place in the traditional territory of the Lekwungen peoples, and today it is reserve land of the Songhees First Nation. This landscape was traditionally managed by prescribed burning and the cultivation of native plants. However, in the early 1950's, Lekwungen peoples left the archipelago, due to a lack of potable water and since then, the landscape has degraded drastically. The introduction of non-native plants has resulted in threats to the ecological, cultural resilience, and diversity of the landscape. My research focuses on developing a restoration plan for springbank clover in the coastal root garden. My restoration approach focuses on incorporating a Songhees-informed approach to restoration by integrating past practices and knowledge with the aim of answering: how to best restore the springbank clover population on Tl’chés?, Eco-cultural restoration, coastal root gardens, traditional ecological knowledge (TEK), Songhees First Nation, cultural keystone place (CPK)
The effects of tree thinning and broadcast burning on the quality of ungulate winter range: a case study within a Southern Interior Forest in British Columbia
Food limitation on ungulate winter range (UWR) has been a suspected factor in the regional declines of Odocoileus hemionus (mule deer) in the Pacific Northwest. Accordingly, enhancing browse resources in this critical habitat is increasingly recommended. At a dry forest site in Southeast B.C. called Fiva Creek (IDF dm1), I investigated the effects of two commonly prescribed methods for enhancing browse production: tree thinning and prescribed burning. Treatments were implemented between 2005–2008 and included three levels of thinning (all burned) and control areas (uncut and unburned). The response variables I measured included browse cover, canopy closure, security cover, visibility, and pellet abundance. I also evaluated browsing pressure on the indicator plant, Saskatoon (Amelanchier alnifolia). Using linear mixed-effects ANOVA tests, I assessed how thinning (with follow-up burning) influenced forest and vegetation properties. There was no evidence of a treatment effect on browse production; however, browsing pressure was very high across the site (i.e., > 80% of A. alnifolia twigs showed evidence of browsing). Additionally, canopy cover was below recommended levels in all thinned treatments. My results suggested that restoration treatments actually diminished the quality of UWR at Fiva Creek. Further investigations are needed to develop effective UWR restoration methods., Mule deer, ungulate winter range, thinning, prescribed fire, restoration ecology
Investigation of the effects of soil and biochar in a rain garden on stormwater quality improvement
Stormwater runoff from parking lots often contains a variety of elements and compounds in different forms and concentration that may pose risks to biota in receiving aquatic systems. Heavy metals including lead (Pb), cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) are of particular concern in such runoff due to their prevalence, toxicity to aquatic organisms and persistence in environment. The ability of commercially available biochar to remove pollutants of concern through column treatments was assessed in this research. Different treatments of biochar were considered and their ability to remove pollutants was compared to soil. The biochar (Emergent and Cantimber) used in this study showed a significant higher molecular weight PAHs removal ability compared to soil and followed the order of Cantimber > Emergent > soil. The effects of heavy metals and PAHs on aquatic organisms and plants degradation can be mitigated by amending the soil media with biochar in the bioretention cells such as raingarden. This could be applied in real world where stormwater runoff can be treated before entering into river or stream therefore cutting the need of future restoration., Emergent Biochar, Cantimber Biochar, Parking lot stormwater, Low impact development, Heavy metals, PAHs, Constructed wetlands
Marsh resiliency strategies in the face of sea-level rise: Pilot project opportunities for Fraser River delta tidal marshes
Coastal wetlands are naturally resilient to changing sea levels; however, as rates of sea-level rise increase, the interaction between changing sea-level and ongoing human impacts will be a major driver in future coastal tidal marsh stability. My goal is to provide decision makers with recommendations to increase the resilience of the Fraser River delta front tidal marsh communities over the twenty-first century. I conducted a literature review to (1) examine the current knowledge base regarding effects of sea-level rise on tidal marshes and (2) identify current ecosystem-based adaptation strategies for increasing tidal marsh resilience to sea-level rise. Based on this review, recommendations are made for strategies that could be used to increase tidal marsh resilience in the Fraser River delta. Recommendations include (1) initiating delta-wide marsh accretion modeling to assess tidal marsh vulnerability under possible sea-level rise scenarios and (2) implementing sediment augmentation pilot projects for both direct (e.g., layered sediment lifts) and indirect (e.g., mud motor) sediment augmentation strategies to test ecosystem based adaptive management strategies as part of an adaptive management framework.
A meta-analysis of North Shore streams: maximizing the effect of installed rain gardens through strategic placement
A meta-analysis using pre-existing data was done for streams in the North Shore of Vancouver, British Columbia. Parameters considered were chemical concentrations from stormwater input including: heavy metals concentrations (Copper (Cu), Zinc (Zn), Cadmium (Cd), Lead (Pb)) and nutrient concentrations (Nitrate (N03-) and Orthophosphate (P04 3-))_ Chronic toxicity guideline exceedance based on the British Columbia Approved Water Quality Guidelines was found in all 94% of stream systems for Cu and 44% of stream systems for Zn. Heavy metal concentrations were found to be positively correlated with percent impervious surface cover in the watershed, with the strength of the correlation being metal-dependent. Three sites within the study had the highest levels of both Cu and Zn. These watersheds (Upper Keith Creek, Maplewood Creek, and Mackay Creek) were prioritized for rain garden installation. Rain garden building specifications to remediate for Zn and Cu were recommended and included addition of mulch layer, minimum depth of topsoil (30 cm), and vegetating with plants with high potential for biofiltration and/or phytoremediation., Impervious surface cover, Stormwater, Rain garden, Green infrastructure, Heavy metal analysis
Nanaimo River estuary restoration: an assessment of berm removal on benthic macroinvertebrates in tidal channels
Macroinvertebrates in two berm-impacted tidal channels (Site A and Site B) were compared to a natural channel (Site C) to determine short-term response to berm removal restoration using a BACI study design. Multivariate analysis indicates that the benthic community composition shifted from before berm removal to after berm removal conditions but not in a predictable organized way. Total abundance was highest at Site A in both conditions (before and after berm-removal). Invertebrate diversity was similar and low among sites. Biomass was highest at Site C. Organic matter percentage was highest at Site C in both conditions and it appeared to increase in Site A and Site B after berm removal. Silt & Clay (>0.0063mm) were statistically different in Site C compared to Site A and Site B although very fine sand was the highest in percentage among sites and in both conditions. Berms affect channel and benthic invertebrate dynamics; time and more research are needed to fully restore the Nanaimo estuary., © Okezioghene Akporuno, 2020. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Estuary restoration, Tidal channel, Benthic macroinvertebrate, Sediment, Detritus, Berm

Pages