Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Alaksen National Wildlife Area: Reservoir suitability for the introduction of the endangered Western Painted Turtle
Alaksen National Wildlife Area located in Delta, BC is home to freshwater species in the former tidal marsh. The current agricultural landscape has left a legacy of high concentrations of heavy metals, trace amounts of organochlorine pesticides, and excess nutrients within the sediments and water of the brackish Fuller and Ewen Reservoirs. Arsenic and phosphorous exceeded Canadian water quality guidelines, while arsenic, chromium, copper, iron, manganese, nickel, and phosphorus exceeded sediment quality guidelines. There were trace pesticides known to be endocrine disrupters detected in the water and sediment, and combined low level toxicity effects are a concern. A preliminary ecological risk assessment on the metals was completed and the results indicate that there is a possibility of adverse effects for benthic invertebrates, but negligible risk for endangered Western Painted Turtles. However, compounding all the ecosystem stressors along with rising sea levels leads ANWA not an ideal place to introduce this species., © Darian Weber, 2019. All rights reserved. No part of this work covered by the copyright heron may be reproduced or used in any form or by any means – graphics, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems – without written permission of the author., Western Painted turtles, ecotoxicology, risk assessment, agricultural reservoir, heavy metal, endocrine disruptors
Assessing the allelopathic effect of invasive phragmites australis on sida hermaphrodita and ammannia robusta; two species at risk in Southern Ontario
In Ontario, invasive Phragmites australis threatens to displace many species including the endangered species Sida hermaphrodita and Ammannia robusta. Germination and growth assays measured the effect of P. australis aqueous extracts from the leaves, rhizomes, and roots on S. hermaphrodita and A. robusta. Germination was inhibited by some of the treatments, but growth was not. The tissues inhibited germination differently for S. hermaphrodita (leaf> rhizome> root) compared to A. robusta (root> rhizome> leaf) indicating that the allelopathic effect was species-specific. However, the laboratory results show that allelopathic effects are weak. This result is consistent to the field study results showing an increase in S. hermaphrodita area and density over time. Results from this project inform management options by indicating which part of the plant needs to be targeted. In this case, all the tissues had some phytotoxic effects, indicating that biomass may need to be removed or long-term management implemented., Invasive Species, Species at Risk, Seed Germination, Seedling Growth, Allelopathy
Assessment of an urban floodplain reconnection project: A case study from the Mamquam River basin, BC.
Dikes and culverts have limited access to off-channel rearing habitats important to juvenile coho salmon (Oncorhyncus kisutch). This study assessed the success of a floodplain reconnection project in Squamish, BC, at providing rearing habitats. Recommendations on restoration priorities within the area were also provided. A single-season, multi-scale occupancy model was used to estimate the probability of occurrence and detection of juvenile coho during the summer. Regression models were used to assess water and habitat quality and identify relationships with juvenile coho metrics. Culverts were also scored for fish passage. The results of this study indicate that the reconnection project was overall successful. Coho non-detections occurred in areas with poor dissolved oxygen and culvert passage issues. Restoration actions should focus on improving water quality in these areas, and protection of areas of high CPUE. Positive relationships between stream productivity and coho metrics indicates the importance of future studies on macroinvertebrate supply., coho salmon, escape cover, rearing habitat, floodplain reconnection, urban channels, Mamquam River
Blanket Creek Provincial Park weedy field restoration plan
A key management concern for provincial parks is the establishment of invasive species due to their impacts on native biodiversity. Within Blanket Creek Provincial Park there is a 0.24 ha heavily invaded field dominated by hawkweed species and spotted knapweed which developed after a series of natural and anthropogenic disturbances. Restoration actions are required to renew the ecological process of natural succession and shift the vegetation community from its current state to one dominated by native species. The aim of this project was to determine the current site conditions which will inform a restoration plan for the site and act as baseline conditions for future monitoring. This site assessment focused on the characterization of the vegetation and soil conditions. Restoration recommendations focus on promoting the development of a deciduous forest characteristic of the Interior Cedar-Hemlock biogeoclimatic ecosystem classification zone. The restoration recommendations include invasive species management, decompaction, fertilization, mulching, and the planting of native trees and shrubs., restoration, alternative stable states, invasive species, forest succession
Carbon sequestration and storage potential along the Trans-Canada Highway corridor in Chilliwack, BC
As of 2017, more than 4 billion people live in urban areas (Ritchie 2018). As people continue to move from rural to urban areas, the concentration of greenhouse gases (GHGs) in urban areas will continue to rise. However, this may be mitigated by increasing carbon sequestration by expanding urban forests (Baines et al. 2020). While the BC government has implemented reforestation projects on logged, provincial land, and has released a Community Toolkit for municipalities to increase their treed environments, there is still available land to be planted between the provincial and municipal land (Cullington et al. 2008). Trees are an important tool for CO2 sequestration and storage. The open landscapes of the Trans-Canada Highway right-of-ways presents an underutilized opportunity to increase the treed environment for carbon sequestration and storage along this open vehicle corridor. This project seeks to model the current carbon sequestration level and the carbon sequestration potential for different vegetation types along the Trans-Canada Highway and develop recommendations for revegetation plans to increase carbon sequestration along this heavily used vehicle corridor. The study site resides along a 20 km stretch of the Trans-Canada Highway in Chilliwack, British Columbia. This area was chosen as it is an agricultural community with very few treed areas. The area was split into the Chilliwack North Polygon (CNP) and the Chilliwack South Polygon (CSP) on ArcMap, on which a grid of 20 m by 20 m squares were laid, which is necessary for transferring the data collected in the field into i-Tree Eco v6.0 (n.d.). The program i-Tree Eco uses measurements, such as diameter at breast height (DBH) and ground cover class, taken in the field to estimate ecosystem services and structural characteristics of the Chilliwack area. Throughout the CNP and CSP areas, 12 were selected based on accessibility, safety, and site representation. The program i-Tree Canopy v7.0 (n.d.) was also used to bolster this information by estimating tree cover and tree benefits for the Chilliwack area through satellite imagery by randomly selecting 500 sampling points throughout the CNP and CSP areas. Grass surveys were conducted in 1 m by 1 m quadrats placed in an area representative of the selected 20 m by 20 m quadrat (i.e. a homogenous area that represents the majority of the vegetation in the plot). Grasses were identified on site to genus or species whenever possible, and their percent cover measured. Soil samples were also taken within the 1 m by 1 m quadrat within the first 15 cm. As these sample sites house anthroposols, sampling within the first 15 cm was selected to capture conditions in the root zone for plant growth. The soil samples taken were used to determine soil texture and soil pH for planting purposes. Finally, a review of highway management practices was done to identify areas where improvements can be made to increase carbon sequestration. Practical management suggestions are based on the results from the above-mentioned analyses. The program i-Tree Eco v6.0 (n.d) indicated that the CNP had the greatest carbon storage of 172,787.3 kg/ha, while the CSP had 15,270.8 kg/ha. The CNP is able to store 11,554.2 tonnes of carbon while the CSP was only able to store 546.1 tonnes of carbon. However, the CNP had an annual net carbon sequestration of - 57.2 tonnes/yr while the CSP has 2.5 tonnes/yr. Red alder (Alnus rubra) comprised 52.3% of tree species recorded and had the highest carbon storage of 6,322.7 tonnes, followed by bigleaf maple (Acer macrophyllum) with 3,186.0 tonnes, black cottonwood (Populus trichocarpa) with 1416.3 tonnes, western hemlock (Tsuga heterophylla) with 1155.6 tonnes, and paper birch (Betula papyrifera) with 19.7 tonnes. The annual net carbon sequestration of red alders however was - 2.2 tonnes/yr, while bigleaf maple had the highest with 3.7 tonne/yr. The program i-Tree Canopy v7.0 (n.d.) indicated that overall, there was 125.37 tonnes of carbon sequestered annually in trees within the CNP and CSP, with 3,734.34 tonnes stored. The ground cover composition of the CNP had a greater composition of shrub (61.1%) and tree (16%) compared to the CSP, while the CSP had greater plantable space (65.4%). This data was used to characterize the study area and model the current carbon sequestration and storage. New management strategies were proposed and native vegetation suitable for the study area was identified.
A contrast of two novel deterrents of goose herbivory at Westham Island foreshore tidal marsh
Since the 1980s, at least 160 ha of marsh vegetation has died off in Sturgeon Bank and Westham Island, located within the Fraser River Estuary. Proposed causes for this marsh recession include sediment deficit, relative sea-level rise, increased salinity, and goose herbivory. At Westham Island, the loss of tidal marsh vegetation is locally distinct in that it occurs in a closed polygon shape versus along the leading edge of the marsh, suggesting that goose herbivory is a principal cause. Goose herbivory on tidal marsh vegetation has become a global problem as many geese populations are becoming hyperabundant. In the Fraser River Estuary, Canada goose (Branta canadensis) and snow goose (Anser caerulescens) numbers have been increasing exponentially. I conducted a field experiment, testing two novel goose herbivory deterrents at Westham Island’s foreshore tidal marsh: metal and snow fencing placed flat against the substrate. I used a randomized complete block design with six replicates and three treatments: metal fencing, snow fencing and control (no fencing). Each treatment's effectiveness was assessed by monitoring changes in common three-square bulrush (Schoenoplectus pungens) every two weeks throughout the summer season (June-September 2022) in terms of stem density, percent cover, and percent of stems grazed. Results indicated that there was no difference in stem density, percent cover, and percent of stems grazed between the two fencing types. However, compared to bulrush in the controls, both snow and metal fencing treatments yielded a higher stem density and percent cover (x̄% difference = 82.9%, 53.1%, respectively) as well as a lower percent of stems grazed. These results suggest that both fencing materials are equally effective at deterring goose herbivory in a tidal marsh. Additional assessments are needed to clarify whether this technique can be scaled up to promote marsh recovery throughout the entire area of recession., tidal marsh recession, goose herbivory deterrents, goose management, Canada geese, common three-square bulrush, snow fencing, chain-link fencing
Drivers of humpback whale movement in Boundary Pass, British Columbia
The Salish Sea is critical habitat for several whale species including the humpback whale (Megaptera novaeangliae). Boundary Pass is part of the Salish Sea and connects the Pacific Ocean to several commercial shipping ports in the Pacific Northwest Region of North America. Since 1997, the number of Humpback whales continues to increase in this area, meanwhile the number of vessels is also increasing such that Boundary Pass is among the busiest shipping routes in the region. This high vessel traffic in the area leads to acoustic disturbances that degrades whale foraging opportunities for humpback whales. Commercial vessels transporting goods through whale habitat causes an increased risk of vessel collisions with humpback whales. Humpback-whale movements in Boundary Pass was recorded through systematic scan surveys conduction from a vantage point between June and August. Whale occupancy was compared to oceanographic variables and vessel presence. We found humpback whales were most likely to be present during ebb tides of speeds of -2 m/s under the influence of low tides and also whales were active in areas overlap with shipping lane in the area. Based on our founding in the area about humpback whale connection with biophysical properties of region I hypothesized that whale distribution in area and it relation to low tide and ebb current is most probably under the influence of food abundance in those periods of time. This study concludes with policy recommendations for improving humpback whale foraging grounds by reducing acoustic harassment and risk of ship strikes in the Boundary Pass., Humpback whale, movements, oceanographic variables, Boundary pass, Salish sea, Vessel strike, tide, currents, SST, salinity
Ecocultural restoration of a Coastal Root Garden on Tl’chés (Chatham Island), B.C.
Tl’chés is the Lekwungen name for the Chatham Islands — an archipelago located southeast of Victoria, British Columbia. Tl’chés is a central place in the traditional territory of the Lekwungen peoples, and today it is reserve land of the Songhees First Nation. This landscape was traditionally managed by prescribed burning and the cultivation of native plants. However, in the early 1950's, Lekwungen peoples left the archipelago, due to a lack of potable water and since then, the landscape has degraded drastically. The introduction of non-native plants has resulted in threats to the ecological, cultural resilience, and diversity of the landscape. My research focuses on developing a restoration plan for springbank clover in the coastal root garden. My restoration approach focuses on incorporating a Songhees-informed approach to restoration by integrating past practices and knowledge with the aim of answering: how to best restore the springbank clover population on Tl’chés?, Eco-cultural restoration, coastal root gardens, traditional ecological knowledge (TEK), Songhees First Nation, cultural keystone place (CPK)
The effects of tree thinning and broadcast burning on the quality of ungulate winter range: a case study within a Southern Interior Forest in British Columbia
Food limitation on ungulate winter range (UWR) has been a suspected factor in the regional declines of Odocoileus hemionus (mule deer) in the Pacific Northwest. Accordingly, enhancing browse resources in this critical habitat is increasingly recommended. At a dry forest site in Southeast B.C. called Fiva Creek (IDF dm1), I investigated the effects of two commonly prescribed methods for enhancing browse production: tree thinning and prescribed burning. Treatments were implemented between 2005–2008 and included three levels of thinning (all burned) and control areas (uncut and unburned). The response variables I measured included browse cover, canopy closure, security cover, visibility, and pellet abundance. I also evaluated browsing pressure on the indicator plant, Saskatoon (Amelanchier alnifolia). Using linear mixed-effects ANOVA tests, I assessed how thinning (with follow-up burning) influenced forest and vegetation properties. There was no evidence of a treatment effect on browse production; however, browsing pressure was very high across the site (i.e., > 80% of A. alnifolia twigs showed evidence of browsing). Additionally, canopy cover was below recommended levels in all thinned treatments. My results suggested that restoration treatments actually diminished the quality of UWR at Fiva Creek. Further investigations are needed to develop effective UWR restoration methods., Mule deer, ungulate winter range, thinning, prescribed fire, restoration ecology
Groundwater elevation and chemistry at Camosun Bog, British Columbia, and implications for bog restoration
A bog is a type of wetland with a high water table, acidic soil and is nutrient poor. Camosun Bog is the oldest bog in the Lower Mainland of British Columbia, and remained undisturbed until development of the surrounding residential neighborhood caused changes to its groundwater conditions, threatening its current persistence. The goal of this study is to provide an updated examination of Camosun Bog’s groundwater conditions and to discuss relevant bog restoration measures. Groundwater elevation and chemistry (pH, conductivity, nitrogen and phosphorus) were monitored for several months in 2019. Results indicate that current groundwater elevations are lower in Camosun Bog than they were thirty years ago, especially in the north and northeast regions. Locations in the north and center parts of the open bog experienced groundwater nitrogen enrichment and higher pH, indicating that raising the water table should be the main goal of restoration for Camosun Bog.
Impacts of roads and cranberry agriculture on bog wetland hydrology with restoration recommendations for Langley Bog
Bog wetlands store a disproportionate amount of carbon for their size, making their conservation an important part of climate change mitigation. The goal of this project is to investigate how roads and agriculture impact the hydrology and vegetation composition of Langley Bog and to provide restoration recommendations. Langley Bog, in Langley Township, BC, is a formerly mined peatland with a fill road running through the center and surrounded to the north and west by cranberry farms. From November 2020 to November 2021, depth to water table and pH were measured monthly at nine wells. Twelve vegetation transects were completed in July 2021. Sites adjacent to the road were correlated with a decrease in summer water level, while sites adjacent to the cranberry farms were correlated with an increase in spring pH levels. A positive relationship was found between an increase in water-table level and percent cover of wetland obligate species. Roads may be lowering the water table through subsidence and drainage. The cranberry farms may be increasing the pH through the deposition of fertilizer. These impacts may have been exacerbated by the unusually dry 2021 summer season. To raise the water table, tree and road removal is recommended to restore lateral flow and decrease evapotranspiration. Culverts installed under the primary fill road will provide additional hydrologic connectivity. Building a berm at outlet points will also help prevent water loss, keeping a higher water table. To increase carbon sequestration, Sphagnum mosses are to be reintroduced to denuded areas in Langley Bog. Tree removal will help in moss establishment by maintaining open bog conditions free from shading. Existing rare ecosystems present in Langley Bog would benefit from the removal of point source pollutants and invasive species on the site. Given the urgency of climate change, restoring the functionality of Langley Bog and protecting the existing stored carbon is a practical and achievable way to move Metro Vancouver a step closer to carbon neutrality., peatlands, ecological restoration, water levels, pH, sphagnum
Investigation of the effects of soil and biochar in a rain garden on stormwater quality improvement
Stormwater runoff from parking lots often contains a variety of elements and compounds in different forms and concentration that may pose risks to biota in receiving aquatic systems. Heavy metals including lead (Pb), cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) are of particular concern in such runoff due to their prevalence, toxicity to aquatic organisms and persistence in environment. The ability of commercially available biochar to remove pollutants of concern through column treatments was assessed in this research. Different treatments of biochar were considered and their ability to remove pollutants was compared to soil. The biochar (Emergent and Cantimber) used in this study showed a significant higher molecular weight PAHs removal ability compared to soil and followed the order of Cantimber > Emergent > soil. The effects of heavy metals and PAHs on aquatic organisms and plants degradation can be mitigated by amending the soil media with biochar in the bioretention cells such as raingarden. This could be applied in real world where stormwater runoff can be treated before entering into river or stream therefore cutting the need of future restoration., Emergent Biochar, Cantimber Biochar, Parking lot stormwater, Low impact development, Heavy metals, PAHs, Constructed wetlands

Pages