Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Ecological restoration options for Clear Lake and South Lake (Riding Mountain National Park), Manitoba
Options for ecological restoration are discussed for the Clear Lake – South Lake complex of Riding Mountain National Park, Manitoba. This project consisted of a) a review of studies conducted on Clear Lake and South Lake and b) a stream water quality sampling program. The review of previous studies was to gain an in-depth understanding of historical processes which shaped Clear Lake and South Lake. Previous condition, current condition and ecological stressors are all identified based on literature from Riding Mountain National Park. The stream water quality sampling program identifies major sources of nutrients into Clear Lake. Ecological restoration options pertain specifically to the Clear Lake – South Lake complex. South Lake restoration options include supplemental planting, dredging and chemical treatments. A novel technique designed to disrupt wind driven nutrient loading is also discussed. These methods are designed to return the South Basin to a macrophyte dominated system. Addressing hypolimnetic oxygen deficiency, two forms of hypolimnetic aeration are discussed to improve water quality in Clear Lake including a ‘Full lift’ design as well as a Speece Cone. Three options regarding the isthmus and connectivity between Clear Lake and South Lake are examined including a fishway installation and a wattle fence installation.
Restoration planning for urban salmonid habitat
Restoration of salmonid habitat has been completed in many urban areas; however, the success of these projects may be limited without consideration of water quality. Urban watersheds are affected by stormwater runoff which transfers toxic substances such as heavy metals, hydrocarbons, and fine particles from impervious surfaces into streams. Previous research has documented impacts of stormwater causing premature death in spawning coho (Oncorhynchus kisutch), and related extent of impervious surfaces to impacts on benthic invertebrates. This research aims to expand our knowledge on the effects of stormwater runoff on water quality and benthic invertebrate communities, and make recommendations for restoration of Mosquito Creek, in North Vancouver, British Columbia. Stream water quality was monitored, site habitats were assessed, and impervious surfaces were mapped. Benthic invertebrate samples were collected and analyzed for abundance, diversity, and pollution tolerance, comparing upstream and downstream of a stormwater inflow and two sites on a reference stream. Average water quality measurements showed minor impacts related to elevated temperatures. However, benthic invertebrate metrics revealed chronic water quality issues, reflecting cumulative impacts. Pollution tolerance index and abundance were reduced at the downstream Mosquito Creek site suggesting impacts from the stormwater inflow, while the Ephemoptera, Plecoptera, Trichoptera (EPT) to total ratio and overall stream health (Streamkeepers Site Assessment Rating) were significantly lower at Mosquito Creek overall suggesting watershed impacts from impervious surfaces and point-source pollution events. Restoration recommendations including a rain garden are discussed to improve water quality for salmonids., Restoration, Urban streams, Salmonids, Benthic invertebrates, Water quality, Stormwater