Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

A historical marsh vegetation composition comparison between five Fraser River foreshore marshes
A full composition study of some key Fraser River foreshore marshes, Boundary Bay, Brunswick Point, Westham Island, Lulu Island, and Sea Island, had not been done in several decades, during which a large-scale marsh recession event occurred at two of the marshes. The vegetation composition is measured in this study with relation to soil water, soil pore water salinity, and elevation. The results in this study show a shift in the vegetation composition in some areas of the Lulu Island marsh, with the other marshes remaining relatively similar to historical data. The plant species’ tolerance to soil water, soil salinity, and elevation vary in each marsh, illustrating the need for individualized restoration plans for each marsh. Conserving and restoring these marshes is critical in light of the many changes in the Fraser River delta, including sea level rise, increased geese populations, altered sediment regimes, and urbanization., Fraser River, brackish marsh, salt marsh, vegetation composition, salinity, elevation
The impacts of exotic Typha on benthic invertebrate communities in the South Arm of the Fraser River Estuary
In recent decades, the exotic cattail Typha angustifolia and its hybrid Typha x glauca have invaded the Fraser River estuary. The impacts from this invasion on benthic macroinvertebrate communities, however, are yet to be studied. Macroinvertebrates play important roles in food chains, trophic dynamics, and nutrient cycling and are potentially at risk from this invasion. In this study, I compared the benthic invertebrate communities between exotic cattail stands and native vegetation stands at 25 paired sites. Sediment cores were analyzed for invertebrate abundance, biomass, and Shannon Wiener diversity index, and it was found that biomass and abundance were lower in exotic cattail when compared to native vegetation, however, there was no difference in diversity. Given the proximity to side channels, tidal inundation time would be a logical explanation for the differences in the benthic communities; however, it was not found to be a significant predictor. Given the invasive nature of exotic cattail and the correlations that were found, cattail should be removed in restoration projects where possible., Fraser River, Typha x glauca, Estuary, Invasive species, Typha angustifolia
Investigating the effect of salinity, elevation, redox potential, and geese herbivory on planting success in a Pacific Northwest salt marsh
The MacKay Creek Estuary, is a severely altered estuarine ecosystem located within an active international port in Vancouver, British Columbia. Several elevated salt marsh terraces were constructed as part of a larger restoration project within the MacKay Creek Estuary. Site visits conducted in 2018 revealed 75% of the terrace surface area failed to establish salt marsh vegetation. Significant difference in soil pore-water salinity, oxidation reduction (redox) potential and tidal elevation were found between vegetated and unvegetated portions of the terraces. Additionally, exclusion from Canada Geese (Branta canadensis) herbivory increased total percent cover and colonization of the adjacent unvegetated area. The combination of soil parameters and herbivory, as well as potential interactions between factors may be responsible for the lack of vegetation progression within the constructed salt marsh terraces at MacKay Creek Estuary., restoration, salt marsh, redox potential, pore-water salinity, MacKay Creek, Fraser River, estuary, Canada geese
Mapping floodplain fish habitat in the heart of the Fraser River and restoration options for impacted attributes on selected large mid-channel islands
The purpose of this project is to develop an ecological restoration plan for degraded habitats on mid-channel islands in the lower Fraser River. The study focuses on Herrling, Carey, and Strawberry islands, large mid-channel islands located in the gravel reach between Mission and Hope, British Columbia. These islands are known to be critical off-channel rearing habitat for many fish species including the threatened White Sturgeon (Acipenser transmontanus) and interior and lower Fraser watershed Chinook Salmon (Oncorhynchus tshawytscha) populations. These islands are also home to many riparian plant and animal species. The flood-pulse concept (FPC) states that seasonal fluctuations in water levels for streams such as the Fraser River contribute substantially to the ecological function of the floodplain ecosystem where this phenomenon occurs. This often results in improved growth and survival rates for fish species that rely on a laterally-moving littoral zone of inundation. This phenomenon is thought by many to be the key to a properly functioning ecosystem in the lower Fraser River. Using a Digital Elevation Model (DEM) for the Fraser River between Hope and Mission, British Columbia, freshet flows (high water elevations) are presented to define the spatial extent of over-bank watering of Strawberry, Carey and Herrling islands. This over-bank watering provides lateral connectivity to floodplain islands. Based on extensive sampling in other studies, this lateral movement results in the creation of high-quality juvenile fish rearing habitat. A restoration plan is presented for those areas of Strawberry, Carey and Herrling islands degraded by recent land clearing for agriculture where they overlap sections defined as fish habitat from the spatial analysis., gravel reach, mid-channel islands, floodplain fish habitat, flood pulse concept, juvenile Chinook Salmon, lower Fraser River, White Sturgeon