Master of Science in Ecological Restoration Applied Research Projects | BCIT Institutional Repository

Master of Science in Ecological Restoration Applied Research Projects

Pages

Blanket Creek Provincial Park weedy field restoration plan
A key management concern for provincial parks is the establishment of invasive species due to their impacts on native biodiversity. Within Blanket Creek Provincial Park there is a 0.24 ha heavily invaded field dominated by hawkweed species and spotted knapweed which developed after a series of natural and anthropogenic disturbances. Restoration actions are required to renew the ecological process of natural succession and shift the vegetation community from its current state to one dominated by native species. The aim of this project was to determine the current site conditions which will inform a restoration plan for the site and act as baseline conditions for future monitoring. This site assessment focused on the characterization of the vegetation and soil conditions. Restoration recommendations focus on promoting the development of a deciduous forest characteristic of the Interior Cedar-Hemlock biogeoclimatic ecosystem classification zone. The restoration recommendations include invasive species management, decompaction, fertilization, mulching, and the planting of native trees and shrubs., restoration, alternative stable states, invasive species, forest succession
Blue carbon dynamics across the Metro Vancouver region
This research project aims to assess the carbon sequestration dynamics of three tidal marshes under different environmental conditions in the Metro Vancouver region. By identifying the site conditions that influence carbon sequestration, areas can be prioritized, and restoration activities can be adapted to increase or maintains the marsh’s ability to do so. This project was done in partnership with Parks Canada and will contribute to a larger study of ‘blue carbon’ across British Columbia. For this project, I collected sediment cores from the eastern portion of Boundary Bay in Delta, BC, Brunswick Point in Ladner, BC, and a constructed salt marsh in Tsawwassen, BC, to assess soil carbon content and carbon stocks. Porewater salinity, vegetation data and depth measurements were collected at these sites as well. Percent carbon content ranged between 3.98 ± 1.48% and 5.78 ± 5.93% between the three marshes and the marsh carbon stock ranged between 93.95 Mg C and 2,994.51 Mg C. Across the three marshes, core carbon stock for the high marsh cores was found to be significantly higher than the core carbon stock for the low marsh cores, suggesting that marsh zonation influences carbon stock. The data analysis and literature review determined that vegetation and porewater salinity had the greatest influence on a marsh’s ability to sequester and store carbon. The results indicate that the high marsh with low salinities and a diverse plant community have the highest carbon sequestration potential. As marshes with conditions similar to that of the Boundary Bay marsh as well as polyhaline marshes should be prioritized for restoration. These findings will aid in the development and implementation of restoration projects to increase a marsh’s ability to sequester carbon., blue carbon, tidal marsh, carbon stock, British Columbia, coastal management, restoration, marsh restoration
Breeding waterfowl use of restored wetlands in the Cariboo region of British Columbia
This study investigated effects of wetland size and emergent vegetation cover on breeding waterfowl and young at 12 restored wetlands in the Cariboo region of British Columbia. Repeated ground surveys were conducted throughout summer 2019 to determine total abundance, density and species richness of waterfowl. Surveyed wetlands varied in size and emergent cover. Large (16-19 ha) wetlands had greater breeding total abundance and lower breeding and brood densities than smaller wetlands. Total abundance of breeding waterfowl and young were highest when wetlands had less than 60% emergent cover. Previous studies suggest that high densities of waterfowl decrease young survival. Restorations created to benefit several species of breeding waterfowl may want to restore wetlands that are large (>16 ha) and have less than 30% emergent vegetation cover. These wetlands had higher total abundances and lower densities than other categories studied, however, certain species may depend on smaller wetlands which should be researched further., Cariboo region, wetland restoration, breeding waterfowl, emergent vegetation
Carbon sequestration and storage potential along the Trans-Canada Highway corridor in Chilliwack, BC
As of 2017, more than 4 billion people live in urban areas (Ritchie 2018). As people continue to move from rural to urban areas, the concentration of greenhouse gases (GHGs) in urban areas will continue to rise. However, this may be mitigated by increasing carbon sequestration by expanding urban forests (Baines et al. 2020). While the BC government has implemented reforestation projects on logged, provincial land, and has released a Community Toolkit for municipalities to increase their treed environments, there is still available land to be planted between the provincial and municipal land (Cullington et al. 2008). Trees are an important tool for CO2 sequestration and storage. The open landscapes of the Trans-Canada Highway right-of-ways presents an underutilized opportunity to increase the treed environment for carbon sequestration and storage along this open vehicle corridor. This project seeks to model the current carbon sequestration level and the carbon sequestration potential for different vegetation types along the Trans-Canada Highway and develop recommendations for revegetation plans to increase carbon sequestration along this heavily used vehicle corridor. The study site resides along a 20 km stretch of the Trans-Canada Highway in Chilliwack, British Columbia. This area was chosen as it is an agricultural community with very few treed areas. The area was split into the Chilliwack North Polygon (CNP) and the Chilliwack South Polygon (CSP) on ArcMap, on which a grid of 20 m by 20 m squares were laid, which is necessary for transferring the data collected in the field into i-Tree Eco v6.0 (n.d.). The program i-Tree Eco uses measurements, such as diameter at breast height (DBH) and ground cover class, taken in the field to estimate ecosystem services and structural characteristics of the Chilliwack area. Throughout the CNP and CSP areas, 12 were selected based on accessibility, safety, and site representation. The program i-Tree Canopy v7.0 (n.d.) was also used to bolster this information by estimating tree cover and tree benefits for the Chilliwack area through satellite imagery by randomly selecting 500 sampling points throughout the CNP and CSP areas. Grass surveys were conducted in 1 m by 1 m quadrats placed in an area representative of the selected 20 m by 20 m quadrat (i.e. a homogenous area that represents the majority of the vegetation in the plot). Grasses were identified on site to genus or species whenever possible, and their percent cover measured. Soil samples were also taken within the 1 m by 1 m quadrat within the first 15 cm. As these sample sites house anthroposols, sampling within the first 15 cm was selected to capture conditions in the root zone for plant growth. The soil samples taken were used to determine soil texture and soil pH for planting purposes. Finally, a review of highway management practices was done to identify areas where improvements can be made to increase carbon sequestration. Practical management suggestions are based on the results from the above-mentioned analyses. The program i-Tree Eco v6.0 (n.d) indicated that the CNP had the greatest carbon storage of 172,787.3 kg/ha, while the CSP had 15,270.8 kg/ha. The CNP is able to store 11,554.2 tonnes of carbon while the CSP was only able to store 546.1 tonnes of carbon. However, the CNP had an annual net carbon sequestration of - 57.2 tonnes/yr while the CSP has 2.5 tonnes/yr. Red alder (Alnus rubra) comprised 52.3% of tree species recorded and had the highest carbon storage of 6,322.7 tonnes, followed by bigleaf maple (Acer macrophyllum) with 3,186.0 tonnes, black cottonwood (Populus trichocarpa) with 1416.3 tonnes, western hemlock (Tsuga heterophylla) with 1155.6 tonnes, and paper birch (Betula papyrifera) with 19.7 tonnes. The annual net carbon sequestration of red alders however was - 2.2 tonnes/yr, while bigleaf maple had the highest with 3.7 tonne/yr. The program i-Tree Canopy v7.0 (n.d.) indicated that overall, there was 125.37 tonnes of carbon sequestered annually in trees within the CNP and CSP, with 3,734.34 tonnes stored. The ground cover composition of the CNP had a greater composition of shrub (61.1%) and tree (16%) compared to the CSP, while the CSP had greater plantable space (65.4%). This data was used to characterize the study area and model the current carbon sequestration and storage. New management strategies were proposed and native vegetation suitable for the study area was identified.
A climate adaptation plan: Identifying thermal refugia for salmonids in the Tsolum River
Stream temperatures in the Pacific Northwest are increasing due to climate change, resulting in thermal stress for salmonids. Groundwater is a cooler source of water into streams, providing thermal refugia. The goal of this Applied Research Project was to identify groundwater input areas in the Tsolum River, using temperature loggers to trace the thermal signal of groundwater. A total of 28 water temperature loggers and 2 air temperature loggers were deployed within the watershed in the summer of 2019. Results showed that 12 sites may be influenced by groundwater input. Restoration/management actions such as riparian planting, gravel bar live staking, and restrictions on groundwater withdrawal are recommended to decrease stream temperatures. This study demonstrated that temperature loggers can be deployed within streams to identify areas of groundwater input. The identification of thermal refugia within the Tsolum River and other salmonid-bearing streams will help to protect salmonids from climate change impacts., climate adaptation, thermal refugia, Tsolum River, groundwater
Comparing soil nematode composition in bluebunch wheatgrass P. spicata root to the occurrence of invasive plants C. stoebe and L. dalmatica
The viability of native bunchgrass ecosystems throughout the PPxh BEC subzone and in Kenna Cartwright Park (KCP) in Kamloops B.C. are under threat by invasive plants. Once established, invasive plants are difficult to eradicate and can predominate the landscape. I collected soil samples from a relatively undisturbed bunchgrass reference site composed of native bluebunch wheatgrass (Pseudoroegneria spicata), and I collected soil samples from a bunchgrass site occupied by the invasive plants, spotted knapweed (Centaurea stoebe) and dalmatian toadflax (Linaria dalmatica), to compare the soil nematode communities. My results reveal differences in the community-level biodiversity and abundance of soil nematodes between sites. The Maturity Index and the Plant Parasitic Index indicate that the native bunchgrass site had a “Structured” soil food web and that the site occupied by invasive plants had a “Basal” soil food web. My results indicate soil nematodes are useful as bioindicators of soil properties and these data provide useful criteria to help prioritize sites for ecological restoration., Nematology, Invasive plants, Pseudoroegneria spicata, Biological indicators, Ecological restoration
A contrast of two novel deterrents of goose herbivory at Westham Island foreshore tidal marsh
Since the 1980s, at least 160 ha of marsh vegetation has died off in Sturgeon Bank and Westham Island, located within the Fraser River Estuary. Proposed causes for this marsh recession include sediment deficit, relative sea-level rise, increased salinity, and goose herbivory. At Westham Island, the loss of tidal marsh vegetation is locally distinct in that it occurs in a closed polygon shape versus along the leading edge of the marsh, suggesting that goose herbivory is a principal cause. Goose herbivory on tidal marsh vegetation has become a global problem as many geese populations are becoming hyperabundant. In the Fraser River Estuary, Canada goose (Branta canadensis) and snow goose (Anser caerulescens) numbers have been increasing exponentially. I conducted a field experiment, testing two novel goose herbivory deterrents at Westham Island’s foreshore tidal marsh: metal and snow fencing placed flat against the substrate. I used a randomized complete block design with six replicates and three treatments: metal fencing, snow fencing and control (no fencing). Each treatment's effectiveness was assessed by monitoring changes in common three-square bulrush (Schoenoplectus pungens) every two weeks throughout the summer season (June-September 2022) in terms of stem density, percent cover, and percent of stems grazed. Results indicated that there was no difference in stem density, percent cover, and percent of stems grazed between the two fencing types. However, compared to bulrush in the controls, both snow and metal fencing treatments yielded a higher stem density and percent cover (x̄% difference = 82.9%, 53.1%, respectively) as well as a lower percent of stems grazed. These results suggest that both fencing materials are equally effective at deterring goose herbivory in a tidal marsh. Additional assessments are needed to clarify whether this technique can be scaled up to promote marsh recovery throughout the entire area of recession., tidal marsh recession, goose herbivory deterrents, goose management, Canada geese, common three-square bulrush, snow fencing, chain-link fencing
Drivers of humpback whale movement in Boundary Pass, British Columbia
The Salish Sea is critical habitat for several whale species including the humpback whale (Megaptera novaeangliae). Boundary Pass is part of the Salish Sea and connects the Pacific Ocean to several commercial shipping ports in the Pacific Northwest Region of North America. Since 1997, the number of Humpback whales continues to increase in this area, meanwhile the number of vessels is also increasing such that Boundary Pass is among the busiest shipping routes in the region. This high vessel traffic in the area leads to acoustic disturbances that degrades whale foraging opportunities for humpback whales. Commercial vessels transporting goods through whale habitat causes an increased risk of vessel collisions with humpback whales. Humpback-whale movements in Boundary Pass was recorded through systematic scan surveys conduction from a vantage point between June and August. Whale occupancy was compared to oceanographic variables and vessel presence. We found humpback whales were most likely to be present during ebb tides of speeds of -2 m/s under the influence of low tides and also whales were active in areas overlap with shipping lane in the area. Based on our founding in the area about humpback whale connection with biophysical properties of region I hypothesized that whale distribution in area and it relation to low tide and ebb current is most probably under the influence of food abundance in those periods of time. This study concludes with policy recommendations for improving humpback whale foraging grounds by reducing acoustic harassment and risk of ship strikes in the Boundary Pass., Humpback whale, movements, oceanographic variables, Boundary pass, Salish sea, Vessel strike, tide, currents, SST, salinity
Ecological restoration of the Little Qualicum River Estuary: Analysis of short-term sediment deposition
Restoration of the Little Qualicum River Estuary has focused on re-establishing the Carex lyngbyei channel edge vegetation lost to grubbing by the overabundant resident Canada goose population. Short-term sediment deposition rates were measured using weekly deployments of sediment traps between June and July 2019 to investigate how restoration is facilitating sediment retention to rebuild the marsh platform. Deposition rates varied between 6.82-107.88 g/m2/week with traps deployed on the denuded mud flat areas collecting more sediments than inside the older exclosures. It had been expected that the exclosures with a greater density of sedges would retain more sediment. Spatial variation may be attributed to differences in sampling elevations. Restoring C. lyngbyei may not increase localized sediment deposition directly but does protect the continued supply of organic input from the seasonal senescence of C. lyngbyei. The organic input from aboveground biomass may have a larger contribution to marsh accretion than allochthonous sediments., sediment deposition, Carex lyngbyei, estuary, restoration, Canada goose
Ecological restoration options for Clear Lake and South Lake (Riding Mountain National Park), Manitoba
Options for ecological restoration are discussed for the Clear Lake – South Lake complex of Riding Mountain National Park, Manitoba. This project consisted of a) a review of studies conducted on Clear Lake and South Lake and b) a stream water quality sampling program. The review of previous studies was to gain an in-depth understanding of historical processes which shaped Clear Lake and South Lake. Previous condition, current condition and ecological stressors are all identified based on literature from Riding Mountain National Park. The stream water quality sampling program identifies major sources of nutrients into Clear Lake. Ecological restoration options pertain specifically to the Clear Lake – South Lake complex. South Lake restoration options include supplemental planting, dredging and chemical treatments. A novel technique designed to disrupt wind driven nutrient loading is also discussed. These methods are designed to return the South Basin to a macrophyte dominated system. Addressing hypolimnetic oxygen deficiency, two forms of hypolimnetic aeration are discussed to improve water quality in Clear Lake including a ‘Full lift’ design as well as a Speece Cone. Three options regarding the isthmus and connectivity between Clear Lake and South Lake are examined including a fishway installation and a wattle fence installation.
An ecological restoration plan for a weedy field at the University of British Columbia Okanagan
Grassland ecosystems are rare, in decline, and support a multitude of at-risk species in British Columbia. At the University of British Columbia Okanagan in Kelowna BC, a 3.3 ha site at the entrance of the campus is outlined as Okanagan grassland in campus design plans but currently lacks native bunchgrass communities. The goal of this restoration plan is to return grassland plant communities to the site despite the pervasiveness of noxious weeds. I characterised site conditions through soil and vegetation surveys. Restoration recommendations include managing noxious weeds through mowing, hand-pulling and some herbicide application. The site will be replanted with bunchgrass vegetation, two pockets of ponderosa forest, and two types of shrub communities. A walking path, signage, and two xeriscape gardens will also be included to control human use of the landscape. Long-term monitoring will be incorporated into classroom curricula to tie monitoring to learning opportunities., Grassland, exotic plants, Noxious weeds, urban restoration, restoration plan
The effect of nitrogen fertilization on the physiology and morphology of Sphagnum capillifolium in an ombrotrophic bog
Degraded peatlands release 100-200 g-CO2 eqv. m-2 yr-1 in net emissions and account for more than 10% of global CO2 emissions. The success of bog restoration is dependent on creating suitable moisture conditions for the donor material to establish, propagate, and develop a new layer of Sphagnum that has hydrophysical and water retention properties similar to natural peatlands. Techniques to improve moisture retention during the transplant process and increase water holding capability of the restored Sphagnum layer have been identified as an area of bog restoration that requires more research. Samples were collected from plots fertilized with six different nitrogen treatments at Mer Bleue Bog in Ottawa, Canada. Net CO2 assimilation, fresh weight, dry weight, water content, and dissolved nutrient measurements were made to determine the potential effectiveness of incorporating nitrogen fertilization into the North American approach to peatland restoration. High levels of nitrogen fertilization exerted deleterious effects on individual morphology, growth density, water holding and retention capacity, CO2 assimilation, and nutrient dynamics and decomposition. Fertilization with 1.6 g m-2 yr-1 of ammonium has the potential to ameliorate water retention capacity through more robust individual morphology and denser growth patterns and increases carbon assimilation and photosynthetic capacity. The results indicate integrating low levels of ammonium fertilization into bog restoration techniques can potentially increase restoration success., water content, carbon dioxide assimilation, growth density, peatland restoration, ammonium, nitrate

Pages