BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

Real-time adaptive optimization engine algorithm for integrated Volt/VAr optimization and conservation voltage reduction of smart microgrids
Proceedings from CIGRÉ Canada Conference, Montreal, Sept. 2012. In recent decade, smart microgrids have raised the feasibility and affordability of adaptive and real-time Volt/VAr optimization (VVO) and Conservation Voltage Reduction (CVR) implementations by their exclusive features such as using smart metering technologies and various types of dispersed generations. Smart distribution networks are presently capable of achieving higher degrees of efficiency and reliability through employing a new integrated Volt/VAr optimization system. For VVO application, two well-known approaches are recommended by different utilities and/or companies: Centralized VVO and Decentralized VVO. In centralized VVO, the processing system is placed in a central controller unit such as DMS in the so called “Utility Back Office”. The DMS uses relevant measurements taken from termination points (i.e. utility subscribers) supplied to it from either field collectors or directly from MDMS, to determine the best possible settings for field-bound VVO/CVR assets to achieve the desired optimization and conservation targets. These settings are then off-loaded to such assets through existing downstream pipes, such as SCADA network In contrast, decentralized VVO utilizes VVO/CVR engines which are located in the field and in close-proximity to the relevant assets to conserve voltage and energy according to local attributes of the distribution network. In this case, local measurements do not need to travel from the field to the back-office, and the new settings for VVO/CVR assets are determined locally, rather than from a centralized controller. Without having any preference between above mentioned VVO techniques, this paper studies an adaptive optimization engine for real-time VVO/CVR in smart microgrids based on Intelligent Agent technology. The optimization algorithm provides the best optimal solution for VVO/CVR problem at each real-time stage through minimizing system loss cost and improves system energy efficiency as well as voltage profile of the relevant distribution system. The algorithm may employ distributed generation sources to address the Volt/VAr optimization problem in real-time. Coordinated VVO/CVR requires real-time data analysis every 15 minutes. It utilizes a distributed command and control architecture to supply the VVO Engine (VVOE) with the required data, and secures real-time configuration from the VVO engine for the VVO control devices such as On-Load Tap Changers (OLTCs), Voltage Regulators (VRs) and Capacitor Banks (CBs). It also has the option of employing distributed generation (DG) as well as modelling load effects in VVO/CVR application. The algorithm minimizes the distribution network power loss cost at each time stage, checks the voltage deviation of distribution buses and distributed generation sources considering different types of constraints such as system power flow, distribution network power factor, system active and reactive power constraints and switching limitations of Volt/VAr control devices. The algorithm receives required real-time data from an intelligent agent. Then, it starts to solve the real-time VVO/CVR problem in order to find the best optimal configuration of the network in real-time. The paper uses British Columbia Institute of Technology (BCIT) distribution network as its case study in order to explore the effectiveness and the accuracy of the optimization engine. Moreover, the VVO/CVR optimization algorithm is implemented in different configurations; a) VVO/CVR confined to the substation and b) VVO/CVR optimization algorithm within the substation and along distribution feeders. The algorithm also checks the availability of DGs to assist VVO/CVR control functions and assesses the impact of new distributed sources such as: Flywheel Energy Storage System (FESS) on real-time VVO/CVR. For this reason, the algorithm classified DGs in a microgrid based on their impacts and instantiates them based on their application feasibility for real-time VVO/CVR., Conference paper, Published.
Real-time adaptive VVO/CVR topology using multi-agent system and IEC 61850-based communication protocol
This paper proposes a new approach for real-time and adaptive Volt/VAr optimization (VVO)/conservation voltage reduction (CVR) system using Intelligent Agents, communicating through IEC 61850 Goose Messaging Protocol. The paper also proposes new real-time adaptive VVO/CVR algorithms tailored for different service level targets and system topologies. The paper argues that each of these variations requires different Intelligent Agent Systems, data structures, and communication requirements. To test the applicability of the VVO/CVR optimization engine, a modified IEEE 34 Node system is used as case study., Article, Published
Real-time co-simulated platform for novel Volt-VAR Optimization of smart distribution network using AMI data
Accepted in IEEE International Conference on Smart Energy Grid Engineering, May 2015. This paper presents a real-time co-simulated platform for novel voltage and reactive power optimization (VVO) of distribution grids through a real-time digital simulator (RTDS) in presence of a reliable communication platform. The proposed VVO engine is able to capture quasi real-time data from local Advanced Metering Infrastructure (AMI) and optimizes the distribution network for each quasi real-time stage (every 5 minutes) based on system main characteristics (i.e. active/reactive power of nodes). At each time stage, the VVO engine tries to minimize losses in the distribution network as well as to improve the voltage profile of the system. In order to test robustness, performance and the applicability of proposed Volt-VAR Optimization engine, a 33 node distribution network has been modeled and studied in a real-time Co-simulated environment by real-time simulator (RTDS) and a real communication platform with DNP.3 protocol. The preliminary results prove well-performance of proposed AMI-based VVO engine and show that the engine enables system to achieve higher level of loss/operating cost reduction through a sophisticated optimization engine compare with conventional approaches., Conference paper, Published.
Real-time co-simulation platform for Smart Grid Volt-VAR Optimization using IEC 61850
This paper presents an implementation of an IEC 61850-based real-time co-simulation platform for verification of the performance of a volt-VAR optimization (VVO) engine for smart distribution networks. The proposed VVO engine is able to minimize grid loss, volt-VAR control asset operational costs, and conservation voltage reduction operational costs through its comprehensive objective functions, weighted by fuzzification using advanced metering infrastructure (AMI) data. The optimization engine receives the AMI data stream through measurement aggregators. Moreover, it sends control commands to volt-VAR control components modeled in real-time digital simulator (RTDS) through DNP.3 protocol. To check the performance and the precision of proposed VVO, a fault scenario is imposed upon the system. IEC 61850 GOOSE messages are generated and sent to change the status of specified breakers, while the VVO engine receives system reconfiguration commands via IEC61850 Manufacturing Message Specification (MMS) protocol. The results of the study on 33-node feeder showed adequate performance of proposed VVO in grid operating scenarios., Article, Published.
Real-time communication platform for Smart Grid adaptive Volt-VAR Optimization of distribution networks
Proceeding of IEEE International Conference on Smart Energy Grid Engineering (SEGE), Aug. 2015, Oshawa, ON, Canada. This paper investigates a real-time communication platform for a Smart Grid adaptive Volt-VAR Optimization (VVO) engine. Novel VVO techniques receive inputs from Advanced Metering Infrastructure (AMI) to dynamically optimize distribution networks. As communication platform design and characteristics affect Smart Grid-based VVO performance in terms of control accuracy and response time, VVO ICT studies is essential for grid planners and/or power utilities. Hence, this paper primarily introduces a real-time co-simulated environment comprised of Smart Grid adaptive VVO engine, RTDS model and system communication platform using DNP3 protocol. This platform is built to test and asses the influence of different components included in Smart Grid monitoring and control system; namely the sensors, measurement units, communication infrastructure on the operation and control of VVO. Moreover, this paper uses a real-time platform to check the robustness of the monitoring and control applications for communication network considerations such as delays and packet loss. Next, this paper investigates how such a platform could look into communication issues while taking system requirements into consideration. A 33-node distribution feeder is employed to check system performance through communication parameters such as throughput and response time., Conference paper, Published.
Real-time control of a video game with a direct brain-computer interface
Mason and Birch have developed a direct brain–computer interface for intermittent control of devices such as environmental control systems and neuroprotheses. This EEG-based brain switch, named the LF-ASD, has been used in several off-line studies, but little is known about its usability with real-world devices and computer applications. In this study, able-bodied individuals and people with high-level spinal injury used the LF-ASD brain switch to control a video game in real time. Both subject groups demonstrated switch activations varying from 30% to 78% and false-positive rates in the range of 0.5% to 2.2% over three 1-hour test sessions. These levels correspond to switch classification accuracies greater than 94% for all subjects. The results suggest that subjects with spinal cord injuries can operate the brain switch to the same ability as able-bodied subjects in a real-time control environment. These results support the findings of previous studies., Peer-reviewed article, Published.
Recruiting new genes in evolving genetic networks
Proceedings of the World Congress on Engineering and Computer Science 2007 WCECS 2007, October 24-26, 2007, San Francisco, USA. Gene recruitment or co-option is defined as the placement of a gene under a foreign regulatory system. Such re-arrangement of pre-existing regulatory networks can lead to an increase in genomic complexity. This reorganization is recognized as a major driving force in evolution. We simulated the evolution of gene networks by means of the Genetic Algorithms (GA) technique. We used standard GA methods of (point) mutation and multi-point crossover, as well as our own operators for introducing or withdrawing new genes on the network. The starting point for our computer evolutionary experiments was a minimal 4-gene dynamic model representing the real genetic network controlling segmentation in the fruit fly Drosophila. Model output was fit to experimentally observed gene expression patterns in the early fly embryo. We found that the mutation operator, together with the gene introduction procedure, was sufficient for recruiting new genes into pre-existing networks. Reinforcement of the evolutionary search by crossover operators facilitates this recruitment. Gene recruitment causes outgrowth of an evolving network, resulting in structural and functional redundancy. Such redundancies can affect the robustness and evolvability of networks., Conference paper, Published.
Relationship between neurological disorders and heart disease
There appears to be an increased risk of cardiovascular disease (CVD) among individuals with spinal cord injury. Quantitative data concerning the risk of heart disease among individuals with other neurological disorders (NDs) are not available. Our aim was to estimate the prevalence of heart disease among individuals with NDs and to compare their risk with a control group., Article, Published. Received: September 19, 2014 ; Accepted: January 05, 2015 ; Published online: February 17, 2015 ; Issue release date: March 2015.
Report on key points arising from visioning process on prosthetic and orthotic education done at the British Columbia Institute of Technology
The Prosthetics and Orthotics Department at the British Columbia Institute of Technology (BCIT) in Vancouver, Canada, has recently completed a visioning process which was done as part of a curriculum review. This report presents and discusses the key points emerging from the process. It is anticipated that the results of the visioning process will provide a basis for a major curriculum revision to the BCIT’s prosthetics and orthotics program. The intent of a curriculum review is to determine whether an educational program’s curriculum is current and relevant with respect to providing students with entry-level skills for the workforce. It involves examining the current scope of practice and competencies of the profession in question and then reflecting back on the curriculum to determine whether these competencies are being taught adequately. Visioning attempts to determine not what entry-level skills graduates require but, instead, what knowledge and skills students need to meet the challenges of the workplace approximately 10 to 15 years into the future., Peer-reviewed article, Published.
The Reservist Re-Entry Program : an alternative approach prior learning assessment and advanced placement in academic and vocational programs for Canadian Soldiers
Prepared for the Atlantic Canada Economic Association Conference, October 19-20, 2012, Halifax Nova Scotia. Both the Canada and United States invest a great deal of resources in the training of their military personal. Many of the skills and experiences accumulated by soldiers are those that are highly valued by civilian employers. Further, these skills are often embodied in academic programs, suggesting soldiers would have a comparative advantage in such programs; however, despite the efforts of government agencies, many soldiers are unable to convert their skills and training into meaningful careers. This paper presents the findings from a pilot program at the BC institute of Technology 2009-2012. The program uses an alternative approach to assessing military training for advanced placement into post-secondary programs. By mapping learning outcomes rather than course equivalences, those from non-traditional education backgrounds are given advanced placement into post-secondary programs. During the pilot period, a cohort of reservists and veterans who have been given advanced placement are tracked and benchmarked against regular students in the same programs over time, measuring academic scores and testing for the development of skills, abilities, and qualities considered important for workplace success., Conference paper, Draft available.
Retroviral genetic algorithms
Proceedings of the 2011 International Conference on Evolutionary Computation Theory and Applications. Classical understandings of biological evolution inspired creation of the entire order of Evolutionary Computation (EC) heuristic optimization techniques. In turn, the development of EC has shown how living organisms use biomolecular implementations of these techniques to solve particular problems in survival and adaptation. An example of such a natural Genetic Algorithm (GA) is the way in which a higher organism's adaptive immune system selects antibodies and competes against its complement, the development of antigen variability by pathogenic organisms. In our approach, we use operators that implement the reproduction and diversification of genetic material in a manner inspired by retroviral reproduction and a genetic-engineering technique known as DNA shuffling. We call this approach Retroviral Genetic Algorithms, or retroGA (Spirov and Holloway, 2010). Here, we extend retroGA to include: (1) the utilization of tags in strings; (2) the capability of the Reproduction-Crossover operator to read these tags and interpret them as instructions; and (3), as a consequence, to use more than one reproductive strategy. We validated the efficacy of the extended retroGA technique with benchmark tests on concatenated trap functions and compared these with Royal Road and Royal Staircase functions., Conference paper, Published.
A review of the chemistry of the genus Crataegus
Since the 1800s, natural health products that contain hawthorn (Crataegus spp.) have been used in North America for the treatment of heart problems such as hypertension, angina, arrhythmia, and congestive heart failure. Traditionally, Native American tribes used hawthorn (Crataegus spp.) to treat gastrointestinal ailments and heart problems, and consumed the fruit as food. Hawthorn also has a long history of use in Europe and China for food, and in traditional medicine. Investigations of Crataegus spp. typically focus on the identification and quantification of flavonoids and anthocyanins, which have been shown to have pharmacological activity. The main flavonoids found in Crataegus spp. are hyperoside, vitexin, and additional glycosylated derivatives of these compounds. Reviewed herein are the botany, ethnobotany, and traditional use of hawthorn while focusing on the phytochemicals that have been reported in Crataegus species, and the variation in the described chemistry between individual species., Peer-reviewed article, Published. Received 4 July 2011; Revised 9 December 2011; Available online 17 May 2012.
Rho-kinase inhibition enhances axonal plasticity and attenuates cold hyperalgesia after dorsal rhizotomy
Dorsal rhizotomy results in primary deafferentation of the dorsal horn with concomitant sprouting of spared intraspinal monoaminergic axons. Because descending monoaminergic systems are thought to mitigate nociceptive transmission from the periphery and because dorsal rhizotomy can result in neuropathic pain, we sought to determine whether the rhizotomy-induced sprouting response could be further augmented. Because myelin-derived molecules mask endogenous plasticity of CNS axons and because myelin-inhibitory signaling occurs through the Rho-GTPase pathway, we inhibited Rho-pathway signaling after cervical dorsal rhizotomy in rats. An increase in the density of serotonergic- and tyrosine hydroxylase-positive fibers was seen in the dorsal horn 1 week after septuple rhizotomy, and axon density continued to increase for at least 1 month. One week after septuple rhizotomy, administration of intrathecal Y-27632, an antagonist of Rho-kinase (ROCK), increased the density of both fiber types over vehicle-treated controls. To examine behavioral effects of both cervical rhizotomy and ROCK inhibition, we examined responses to evoked pain: mechanical and thermal allodynia and cold hyperalgesia in the forepaw were examined after single, double, and quadruple rhizotomies of dorsal roots of the brachial plexus. The most notable behavioral outcome was the development of cold hyperalgesia in the affected forepaw after rhizotomies of the C7 and C8 dorsal roots. Application of Y-27632 both attenuated cold hyperalgesia and induced monoaminergic plasticity after C7/8 rhizotomy. Thus, inhibition of Rho-pathway signaling both promoted the sprouting of intact supraspinal monoaminergic fibers and alleviated pain after dorsal rhizotomy., Peer-reviewed article, Published. Received July 6, 2004; revised Oct. 3, 2004; accepted Oct. 18, 2004.
The rise of living architecture
"Gives voice to more than fifty extraordinary people who are currently engaged with this transformation. These individuals form a diverse community that cuts across professional disciplines, cultural, linguistic and gergraphical boundaries. They share a belief that they can make a difference through their varied efforts to expand living architectural approaches that result in biophilic, restorative buildings and healthier and more resilient communities." Profiles more than 50 of the hundreds of leaders that have created the base and molded the foundation of living architecture., Book, Published.
A roadmap to integration
Smart grid-related blogs, newsletters, and conferences have endured numerous debates and discussions around the issue of whether or not the smart grid integrated correctly. While most debates focus on approach, methodology, and the sequence of what to be done, there is insufficient discussion about actually meant by "smart grid integration." This article attempts to present a holistic view of integration and argues for the importance of developing system integration “maps” based on a utility's strategic smart grid road map., Article, Published
Schwann cells generated from neonatal skin-derived precursors or neonatal peripheral nerve improve functional recovery after acute transplantation into the partially injured cervical spinal cord of the rat
The transplantation of Schwann cells (SCs) holds considerable promise as a therapy for spinal cord injury, but the optimal source of these cells and the best timing for intervention remains debatable. Previously, we demonstrated that delayed transplantation of SCs generated from neonatal mouse skin-derived precursors (SKP-SCs) promoted repair and functional recovery in rats with thoracic contusions. Here, we conducted two experiments using neonatal rat cells and an incomplete cervical injury model to examine the efficacy of acute SKP-SC transplantation versus media control (Experiment 1) and versus nerve-derived SC or dermal fibroblast (Fibro) transplantation (Experiment 2). Despite limited graft survival, by 10 weeks after injury, rats that received SCs from either source showed improved functional recovery compared with media- or fibroblast-treated animals. Compared with media treatment, SKP-SC-transplanted rats showed enhanced rubrospinal tract (RST) sparing/plasticity in the gray matter (GM) rostral to injury, particularly in the absence of immunosuppression. The functional benefits of SC transplantations over fibroblast treatment correlated with the enhanced preservation of host tissue, reduced RST atrophy, and/or increased RST sparing/plasticity in the GM. In summary, our results indicate that: (1) early transplantation of neonatal SCs generated from skin or nerve promotes repair and functional recovery after incomplete cervical crush injury; (2) either of these cell types is preferable to Fibros for these purposes; and (3) age-matched SCs from these two sources do not differ in terms of their reparative effects or functional efficacy after transplantation into the injured cervical spinal cord., Peer-reviewed article, Published.Received March 17, 2014; revised March 18, 2015; accepted March 21, 2015.

Pages