BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

How to qualify an analytical laboratory for analysis of herbal dietary ingredients and avoid using a "dry lab"
For better or for worse, many of the simple, unprocessed, and easily identifiable herbs of a bygone era can be found in retail commerce only rarely and with some degree of difficulty. Many modern botanical products intended for health-related purposes are, for the most part, quite complicated, often requiring additional testing for authentication of identity and for the presence of accidental or intentional adulterants, including contaminants such as heavy metals, pesticides, noxious microbes, and mycotoxins. As knowledge on the composition and properties of herbs has evolved, so too has the ability to evaluate those properties (e.g., marker compounds) using technology. The modern world also superimposes itself on commerce in the form of smelters, internal combustion engines, fecal coliforms, leaded gasoline, pesticides, prescription drugs, and other noxious substances that necessitate testing in addition to evaluating the inherent properties of the raw materials and finished products. No evaluation of herbal quality would be complete without some means of assuring that these and other unintentional contaminants are absent. In addition to an individual manufacturer’s desire to create and sell only the highest quality products, there are significant regulatory requirements surrounding the sale of botanical goods. Whether they are called natural health products (Canada), therapeutic goods (Australia), dietary supplements (United States), or phytomedicines (Europe), there are regulatory requirements to set specifications and to test for conformity with those specifications. Thus, the laboratory enters the scene., Article, Published.
Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems
Fibre properties and the biochemical composition of cell walls are important traits in many applications. For example, the lengths of fibres define the strength and quality of paper, and lignin content is a critical parameter for the use of biomass in biofuel production. Identifying genes controlling these traits is comparatively difficult in woody species, because of long generation times and limited amenability to high-resolution genetic mapping. To address this problem, this study mapped quantitative trait loci (QTLs) defining fibre length and lignin content in the Arabidopsis recombinant inbred line population Col-4×Ler-0. Adapting high-throughput phenotyping techniques for both traits for measurements in Arabidopsis inflorescence stems identified significant QTLs for fibre length on chromosomes 2 and 5, as well as one significant QTL affecting lignin content on chromosome 2. For fibre length, total variation within the population was 208% higher than between parental lines and the identified QTLs explained 50.58% of the observed variation. For lignin content, the values were 261 and 26.51%, respectively. Bioinformatics analysis of the associated intervals identified a number of candidate genes for fibre length and lignin content. This study demonstrates that molecular mapping of QTLs pertaining to wood and fibre properties is possible in Arabidopsis, which substantially broadens the use of Arabidopsis as a model species for the functional characterization of plant genes., Peer-reviewed article, Published. Received 3 April 2012; Revised 11 October 2012; Accepted 15 October 2012.
Impact of electrical intertie capacity on carbon policy effectiveness
This study investigates the potential cost and emissions reductions that result from an increase in electricity transmission capacity between Canada's two westernmost provinces: Alberta, a fossil fuel dominated jurisdiction, and British Columbia, a predominantly hydroelectric jurisdiction. A bottom-up model is used to find the least cost electricity generation mix in Alberta and British Columbia under different carbon policies. The long-term evolution of the electricity system is determined by minimizing net present cost of electricity generation for the time span of 2010–2060. Different levels of intertie capacity expansion are considered together with a variety of carbon tax and carbon cap scenarios. Results indicate that increased intertie capacity reduces the cost of electricity and emissions under carbon pricing policies. However, the expandable intertie does not encourage greater adoption of variable renewable generation. Instead, it is used to move low-cost energy from the United States to Alberta. The optimal intertie capacity and cost reduction of increased interconnectivity increases with more restrictive carbon policies., Peer-reviewed article, Published. Received 3 March 2016, Revised 23 September 2016, Accepted 12 October 2016, Available online 15 November 2016.
Impact of EV penetration on Volt–VAR Optimization of distribution networks using real-time co-simulation monitoring platform
This paper aims to investigate the impact of different Electric Vehicle (EV) penetration on quasi real-time Volt–VAR Optimization (VVO) of smart distribution networks. Recent VVO solutions enable capturing data from Advanced Metering Infrastructure (AMI) in quasi real-time to minimize distribution networks loss costs and perform Conservation Voltage Reduction (CVR) to save energy. The emergence of EVs throughout distribution feeder increases grid complexity and uncertainty levels that could affect AMI-based VVO objectives. Hence, this paper primarily introduces an AMI-based VVO engine, able to minimize grid loss and Volt–VAR control assets operating costs while maximizing CVR benefit. It then presents a real-time co-simulation platform comprised of the VVO engine, grid model in a real-time simulator and monitoring platform, communicating with each other through DNP.3 protocol, to test the precision and performance of AMI-based VVO in presence of different EV penetration levels. Accordingly, 33-node distribution feeder is studied through different EV penetration scenarios. The results show significant changes in AMI-based VVO performance especially in CVR sub-part of VVO according to EV model and type. Thus, this study could lead near future VVO solutions to gain higher levels of accuracy and efficiency considering smart microgrid components such as EV in their models., Article, Published. Received 27 November 2015, Revised 8 January 2016, Accepted 22 January 2016, Available online 16 February 2016.
The impact of spinal cord injury on sexual function
Study Design: Secure, web-based survey. Objectives: Obtain information from the spinal cord injured (SCI) population regarding sexual dysfunctions, with the aim of developing new basic science and clinical research and eventual therapies targeting these issues. Setting: Worldwide web. Methods: Individuals 18 years or older living with SCI. Participants obtained a pass-code to enter a secure website and answered survey questions. A total of 286 subjects completed the survey. Results: The majority of participants stated that their SCI altered their sexual sense of self and that improving their sexual function would improve their quality of life (QoL). The primary reason for pursuing sexual activity was for intimacy need, not fertility. Bladder and bowel concerns during sexual activity were not strong enough to deter the majority of the population from engaging in sexual activity. However, in the subset of individuals concerned about bladder and/or bowel incontinence during sexual activity, this was a highly significant issue. In addition, the occurrence of autonomic dysreflexia (AD) during typical bladder or bowel care was a significant variable predicting the occurrence and distress of AD during sexual activity. Conclusion: Sexual function and its resultant impact on QoL is a major issue to an overwhelming majority of people living with SCI. This certainly constitutes the need for expanding research in multiple aspects to develop future therapeutic interventions for sexual health and SCI., Peer-reviewed article, Published.
The impact of step targeting during normal gait for persons wearing either a SACH or a dynamic-response foot
This study compared dynamic-response feet to SACH feet with respect to factors influencing unilateral transtibial amputee balance and ability to adapt to variable terrains. This was done by measuring ground reaction forces for 30% perturbations of step length during level walking. These perturbations resulted in either a lengthening or a shortening of one step length by 30% of the normal step length. Subjects walked along a 12 metre walkway and across two flush mounter force platforms while forces were recorded for both feet. Three experimental conditions were completed with each foot type: normal step length, short step length (reduced by 30% from normal), and long step length (increased by 30% from normal)., Research report, Published.
The importance of method selection in determining product integrity for nutrition research
The American Herbal Products Association estimates that there as many as 3000 plant species in commerce. The FDA estimates that there are about 85,000 dietary supplement products in the marketplace. The pace of product innovation far exceeds that of analytical methods development and validation, with new ingredients, matrixes, and combinations resulting in an analytical community that has been unable to keep up. This has led to a lack of validated analytical methods for dietary supplements and to inappropriate method selection where methods do exist. Only after rigorous validation procedures to ensure that methods are fit for purpose should they be used in a routine setting to verify product authenticity and quality. By following systematic procedures and establishing performance requirements for analytical methods before method development and validation, methods can be developed that are both valid and fit for purpose. This review summarizes advances in method selection, development, and validation regarding herbal supplement analysis and provides several documented examples of inappropriate method selection and application., Peer-reviewed article, Published.
Improved dynamic friction models for simulation of one-dimensional and two-dimensional stick-slip motion
In many mechanical systems, the tendency of sliding components to intermittently stick and slip leads to undesirable performance, vibration, and control behaviors. Computer simulations of mechanical systems with friction are difficult because of the strongly nonlinear behavior of the friction force near zero sliding velocity. In this paper, two improved friction models are proposed. One model is based on the force-balance method and the other model uses a spring-damper during sticking. The models are tested on hundreds of lumped mass-spring-damper systems with time-varying excitation and normal contact forces for both one-dimensional and two-dimensional stick-slip motions on a planar surface. Piece-wise continuous analytical solutions are compared with solutions using other published force-balance and spring-damper friction models. A method has been developed to set the size of the velocity window for Karnopp’s friction model. The extensive test results show that the new force-balance algorithm gives much lower sticking velocity errors compared to the original method and that the new spring-damper algorithm exhibits no spikes at the beginning of sticking. Weibull distributions of the sticking velocity errors enable maximum errors to be estimated a priori., Technical papers, Published. Received February 03, 2000; Revised August 17, 2000.
In silico evolution of gene cooption in pattern-forming gene networks
Gene recruitment or cooption occurs when a gene, which may be part of an existing gene regulatory network (GRN), comes under the control of a new regulatory system. Such re-arrangement of pre-existing networks is likely more common for increasing genomic complexity than the creation of new genes. Using evolutionary computations (EC), we investigate how cooption affects the evolvability, outgrowth and robustness of GRNs. We use a data-driven model of insect segmentation, for the fruit fly Drosophila, and evaluate fitness by robustness to maternal variability—a major constraint in biological development. We compare two mechanisms of gene cooption: a simpler one with gene Introduction and Withdrawal operators; and one in which GRN elements can be altered by transposon infection. Starting from a minimal 2-gene network, insufficient for fitting the Drosophila gene expression patterns, we find a general trend of coopting available genes into the GRN, in order to better fit the data. With the transposon mechanism, we find co-evolutionary oscillations between genes and their transposons. These oscillations may offer a new technique in EC for overcoming premature convergence. Finally, we comment on how a differential equations (in contrast to Boolean) approach is necessary for addressing realistic continuous variation in biochemical parameters., Peer-reviewed article, Published. Received 29 September 2012; Accepted 13 November 2012.
In silico evolution of the hunchback gene indicates redundancy in cis-regulatory organization and spatial gene expression
Biological development depends on the coordinated expression of genes in time and space. Developmental genes have extensive cis-regulatory regions which control their expression. These regions are organized in a modular manner, with different modules controlling expression at different times and locations. Both how modularity evolved and what function it serves are open questions. We present a computational model for the cis-regulation of the hunchback (hb) gene in the fruit fly (Drosophila). We simulate evolution (using an evolutionary computation approach from computer science) to find the optimal cis-regulatory arrangements for fitting experimental hb expression patterns. We find that the cis-regulatory region tends to readily evolve modularity. These cis-regulatory modules (CRMs) do not tend to control single spatial domains, but show a multi-CRM/multi-domain correspondence. We find that the CRM-domain correspondence seen in Drosophila evolves with a high probability in our model, supporting the biological relevance of the approach. The partial redundancy resulting from multi-CRM control may confer some biological robustness against corruption of regulatory sequences. The technique developed on hb could readily be applied to other multi-CRM developmental genes., Peer-reviewed article, Published.
Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp
To improve the efficiency of enzymatic hemicellulose removal from bamboo pre-hydrolysis kraft pulp, mechanical refining was conducted prior to enzyme treatment. Refining significantly improved the subsequent hemicellulose removal efficiency by xylanase treatment. Results showed that when PFI refining was followed by 3 h xylanase treatment, the xylan content of the bamboo pre-hydrolysis kraft pulp (after first stage oxygen delignification) could be decreased to 2.72% (w/w). After bleaching of enzyme treated pulp, the alpha-cellulose content was 93.4% (w/w) while the xylan content was only 2.38%. The effect of refining on fibre properties was investigated in terms of freeness, water retention value, fibre length and fibrillation characteristics. The brightness, reactivity and viscosity were also determined to characterize the quality of final pulp. Results demonstrated the feasibility of combining refining and xylanase treatment to produce high quality bamboo dissolving pulp., Peer-reviewed article, Published. Received 1 September 2016; Revised 9 October 2016; Accepted 12 October 2016; Available online 24 October 2016.
The influence of AFO design on walking speed, gait symmetry, comfort and stability of hemiplegic subjects
"This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Prosthetics and Orthotics"., Thesis, Published.

Pages