BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

Effect of attic insulation thickness and solar gain in a mild climate
Attic air ventilation can be influenced by various vent considerations. In addition to vent ratio and location of roof vents, attic insulation thickness can be considered as an influential factor in attic air flow and temperature distribution. Most existing building codes do have a minimum requirement for venting parameters and type and thickness of the insulation used. In this paper, the effect of insulation thickness in attic ventilation rate, attic air temperature and heating and cooling loads in a mild climatic zone is studied. A typical mild climate summer and winter temperatures and solar radiations data are used for 24 hours transient conjugate heat transfer simulations. Results show that solar radiation has significant impact on the amount and the pattern of airflow in attic. An increase in attic insulation yields a decrease in attic ventilation during winter period, but has no effect in summer period for the climate considered. In general, the higher the attic insulation thickness is the lower the building takes advantage of solar gain during winter period, but higher insulation levels tend to be advantageous during summer cooling period., Peer reviewed article, Published. Available online 30 December 2015.
The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates
The effect of gross fiber characteristics on enzyme accessibility and hydrolysis of Douglas fir kraft pulp substrates was investigated. The average fiber size and coarseness of the substrate had a significant effect on the enzyme adsorption capacity. This was primarily due to the increased specific surface area of small fibers and fines. The observed adsorption capacities were in agreement with the hydrolysis rates and yields because the substrates with the lower average fiber size were hydrolyzed both at a faster rate and more completely. The observed changes in fiber-length distribution and fiber coarseness suggested that the effect of fiber size was most influential during the initial stages of hydrolysis. The small fibers and fines present in heterogeneous, lignocellulosic substrates were hydrolyzed rapidly, yielding a high initial rate of hydrolysis., Peer-reviewed article, Published. Received 27 January 1999; Revised 10 June 1999; Accepted 15 June 1999; Available online 1 November 1999.
Effect of varying surface patterns on antibiotic elution from antibiotic-loaded bone cement
In an effort to improve the antibiotic elution characteristics of the prosthesis of antibiotic-loaded acrylic cement, an in vitro study was conducted. Tobramycin-loaded bone cement blocks of three different surface patterns with different surface area-to-volume ratios were used. The elution of tobramycin over a 2-month period was investigated. There was a gradual decline in the tobramycin elution rate over time. The surface pattern with the increased surface area-to-volume ratio showed a significant increase in the tobramycin elution rate over the first week of the study. The surface pattern with ridges but no change in the surface area-to-volume ratio did not result in a statistically significant increase in the tobramycin elution rate., Peer-reviewed article, Published.
The effects of gene recruitment on the evolvability and robustness of pattern-forming gene networks
Gene recruitment or co-option is defined as the placement of a new gene under a foreign regulatory system. Such re-arrangement of pre-existing regulatory networks can lead to an increase in genomic complexity. This reorganization is recognized as a major driving force in evolution. We simulated the evolution of gene networks by means of the Genetic Algorithms (GA) technique. We used standard GA methods of point mutation and multi-point crossover, as well as our own operators for introducing or withdrawing new genes on the network. The starting point for our computer evolutionary experiments was a 4-gene dynamic model representing the real genetic network controlling segmentation in the fruit fly Drosophila. Model output was fit to experimentally observed gene expression patterns in the early fly embryo. We compared this to output for networks with more and less genes, and with variation in maternal regulatory input. We found that the mutation operator, together with the gene introduction procedure, was sufficient for recruiting new genes into pre-existing networks. Reinforcement of the evolutionary search by crossover operators facilitates this recruitment, but is not necessary. Gene recruitment causes outgrowth of an evolving network, resulting in redundancy, in the sense that the number of genes goes up, as well as the regulatory interactions on the original genes. The recruited genes can have uniform or patterned expressions, many of which recapitulate gene patterns seen in flies, including genes which are not explicitly put in our model. Recruitment of new genes can affect the evolvability of networks (in general, their ability to produce the variation to facilitate adaptive evolution). We see this in particular with a 2-gene subnetwork. To study robustness, we have subjected the networks to experimental levels of variability in maternal regulatory patterns. The majority of networks are not robust to these perturbations. However, a significant subset of the networks do display very high robustness. Within these networks, we find a variety of outcomes, with independent control of different gene expression boundaries. Increase in the number and connectivity of genes (redundancy) does not appear to correlate with robustness. Indeed, removal of recruited genes tends to give a worse fit to data than the original network; new genes are not freely disposable once they acquire functions in the network., Book chapter, Published.
The effects of global climate change on carbonation induced corrosion of reinforced concrete structures
There is nearly unanimous consensus amongst scientists that increasing greenhouse gas emissions, including CO2 generated by human activity, are affecting the Earth‘s climate. Climate change has the potential to overwhelm existing capacities, as well as durability of concrete infrastructure. Carbonation of concrete occurs due to a reaction between atmospheric CO2 and the hydrated phases of concrete, leading to a drop in its pH and the depassivation of embedded rebar. Therefore, increases in carbonation rates of reinforced concrete structures are expected as a result of increased temperatures and CO2 concentrations, with the enhanced risk of carbonation induced corrosion likely affecting the longevity of our concrete infrastructure. This thesis considered the potential consequences of global climate change on our concrete infrastructure, with the objective being to determine if there is an increased risk of deterioration due to carbonation induced corrosion. A unique numerical model was developed to determine carbonation rates in structures, and verified through experimental tests. The model was applied to a numbers of cities in locations throughout the world to determine where structures were most vulnerable. Additionally, a number of other laboratory experiments were carried out to supplement the numerical model and provide insights as to how carbonation progress can be monitored within a structure. Using the model developed, and inputting forecasts for increases in future atmospheric CO2 concentrations and weather conditions, it was shown that for medium quality, non-pozzolonic concrete in geographic areas where carbonation induced corrosion is a concern, global climate change will affect its progress in our concrete infrastructure. We will see much higher ultimate carbonation depths in the long term. The use of non-destructive testing (NDT) methods, and structural health monitoring (SHM) techniques could be invaluable in monitoring the progress of carbonation in a structure, but the data generated by the methods and techniques used must be analyzed carefully before making any conclusions. For the NDT methods and carbonation pH sensors which were evaluated in this study, it was found that ambient test conditions had a major impact on results., Thesis, Published.
The effects of structural cracking on carbonation progress in reinforced concrete
Proceedings of 3rd International Conference on the Durability of Concrete Structures, 17-19 September 2012, Queen’s University Belfast. There is nearly unanimous consensus among scientists that increasing greenhouse gas emissions, including CO2 generated by human activity, are affecting the Earth’s climate. One essential area which will be affected is the durability of concrete infrastructure. Past research indicates that climate change will exacerbate the rate of carbonation of reinforced concrete structures, potentially leading to premature corrosion of embedded rebar. Cracking of the covering concrete could further increase carbonation rates, but the extent of the increase is unknown. The purpose of this study is to investigate the carbonation of cracked concrete under accelerated test conditions, and to numerically model the movement of the carbonation front in cracked concrete using the concept of effective diffusivity. It was found that the presence of a deep structural crack in a concrete specimen greatly increases the rate of carbonation, possibly leading to premature, localized corrosion within the specimen. The effect of cracks is likely to be much greater than the effect of increased temperatures and increased atmospheric CO2 concentrations. As a result, emphasis must be placed on designing durable infrastructure and following proper maintenance practices so that cracks are less likely to form, thereby extending the longevity of the structure in question., Conference paper, Published.
Emotional design
In my teaching and software development practice, I realized that most applications with human-computer interaction do not respond to usersâ emotional needs. The dualism of reason and emotion as two fairly opposite entities that dominated Western philosophy was also reflected in software design. Computing was originally intended to provide applications for military and industrial activities and was primarily associated with cognition and rationality. Today, more and more computer applications interact with users in very complex and sophisticated ways. In human-computer interaction, attention is given to issues of usability and user modeling, but techniques to emotionally engage users or respond to their emotional needs have not been fully developed, even as specialists like Klein, Norman and Picard argued that machines that recognize and express emotions respond better and more appropriately to user interaction (Picard, 1997; Picard & Klein, 2002; Norman, 2004). This study investigated emotion from designersâ perspectives and tentatively concludes that there is little awareness and involvement in emotional design in the IT community. By contrast, participants in this study (36 IT specialists from various fields) strongly supported the idea of emotional design and confirmed the need for methodologies and theoretical models to research emotional design. Based on a review of theory, surveys and interviews, I identified a set of themes for heuristics of emotional design and recommended future research directions. Attention was given to consequences; participants in this study raised issues of manipulation, ethical responsibilities of designers, and the need for regulations, and recommended that emotional design should carry standard ethical guidelines for games and any other applications. The research design utilized a mixed QUAN-qual methodological model proposed by Creswell (2003) and Gay, Mills, and Airasian (2006), which was modified to equally emphasize both quantitative and qualitative stages. An instrument in the form of a questionnaire was designed, tested and piloted in this study and will be improved and used in future research., Published., Peer reviewed, Thesis/Dissertation
Emotional design
Proceedings from the First Biannual Conference on Technological Learning and Thinking: Culture, Design, Sustainability, Human Ingenuity held in Vancouver, BC, Canada, 2010., Not peer reviewed, Conference paper
Endogenous TrkB ligands suppress functional mechanosensory plasticity in the deafferented spinal cord
Dorsal root injury (DRI) disrupts the flow of sensory information to the spinal cord. Although primary afferents do not regenerate to their original targets, spontaneous recovery can, by unknown mechanisms, occur after DRI. Here, we show that brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), but not nerve growth factor or neurotrophin-4, are upregulated in the spinal gray matter after DRI. Because endognous BDNF and NT-3 have well established roles in synaptic and axonal plasticity, we hypothesized that they contributed to spontaneous recovery after DRI. We first developed a model of DRI-induced mechanosensory dysfunction: rat C7/8 DRI produced a deficit in low-threshold cutaneous mechanosensation that spontaneously improved within 10 d but did not recover completely. To determine the effects of endogenous BDNF and NT-3, we administered TrkB-Fc or TrkC-Fc fusion proteins throughout the recovery period. To our surprise, TrkB-Fc stimulated complete recovery of mechanosensation by 6 d after DRI. It also stimulated mechanosensory axon sprouting but prevented deafferentation-induced serotonergic sprouting. TrkC-Fc had no effect on low-threshold mechanosensory behavior or axonal plasticity. There was no mechanosensory improvement with single-bolus TrkB-Fc infusions at 10 d after DRI (despite significantly reducing rhizotomy-induced cold pain), indicating that neuromodulatory effects of BDNF did not underlie mechanosensory recovery. Continuous infusion of the pan-neurotrophin antagonist K252a also stimulated behavioral and anatomical plasticity, indicating that these effects of TrkB-Fc treatment occurred independent of signaling by other neurotrophins. These results illustrate a novel, plasticity-suppressing effect of endogenous TrkB ligands on mechanosensation and mechanosensory primary afferent axons after spinal deafferentation., Peer-reviewed article, Published. Received Oct. 2, 2006; revised March 26, 2007; accepted April 20, 2007.
Energy rating of polyurethane spray foamed walls
Proceedings of 4th International Building Physics Conference: 15 June 2009, Istanbul, Turkey. This is the first of a series of papers to present the results of this major project. In this paper, an overview of the project, its objectives and the theoretical approach to determine the WER are presented. A description of air leakage and R-value test procedures, wall samples construction and the experimental results of two walls and a sample of the analytical results of the same two walls will also be presented. Future papers will summa-rise the experimental and analytical results of the remaining walls, along with the results of the computer modeling of the air leakage and thermal performance of all the walls tested in this project., Conference paper, Published. A version of this document is published in: 4th International Building Physics Conference, Istanbul, Turkey, June 15-18, 2009, pp. 1-8.
Enhancing student engagement and learning effectiveness through multi-role contributions and collaborative exams
This project proposes teaching-learning coupling as students take different roles during the course, from being learners, teachers, and proponents; finally, students take exams in a collaborative manner – initially, their exam is done individually followed by a team consultation period for the exam completion., Not peer reviewed, report
Environmental regulation, asymmetric information, and moral hazard
This paper presents a model of environmental regulation in the presence of measurement costs and asymmetric information. Environmental regulation can be viewed as a form of agency problem where the polluting firms may have better information about the true level of their abatement activities than the regulator. If certain aspects of environmental quality are costly to measure, regulators may resort to proxies to infer information about environmental quality. This may allow firms to circumvent the regulatory constraints by maximizing along those margins that are costly to measure. This problem is especially acute when a single firm produces multiple pollutants., Essay, Published.

Pages