BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

Case studies on the use of information technology in the Canadian construction industry
A series of eleven case studies were gathered from across Canada in the summer of 2002. These case studies define an initial compendium of Best Practice in the use of information technology (IT) in Canada. The professionals interviewed included architects, engineers, general contractors, and owners. Many of them are at the cutting edge in their use of IT. The documentation of their pioneering use of IT can demonstrate how useful these technologies can be and what potential pitfalls are of concern. The case studies cover architecture, engineering, construction management, and specialized contractors. The following technologies were demonstrated: 3D CAD; custom Web sites; commercial Web portals; and in-house software development. No case was found that used wireless communication or standardized data formats such as IFCs or CIMSteel. The following issues were identified: the electronic distribution of documents is more efficient and cheaper; the short time-line and the tight budgets make it difficult to introduce new technologies on projects; the industry is locked in one CAD system and it is difficult to introduce new ones; it is costly to maintain trained CAD and IT personnel; and companies that lag behind reduce the potential benefits of IT. Still, the industry could achieve substantial benefits from the adoption of IT if it would be more widespread., Peer reviewed, Peer reviewed article, Submitted: August 2003 ; Revised: January 2004 ; Published: February 2004, Information technology, Technology use, Case studies, Architecture, Engineering and construction industry, Canada
A case study in using Standard 55 for a residential building prioritizing thermal comfort for homes
A 2015 ASHRAE news release corrected the assumption that thermal comfort research included only middle-aged men in suits working in offices.(1) Standard 55 is gender neutral and can be applied to most environments where people go-including into homes. ASHRAE stands behind this assertion through a 2014 interpretation, and includes the standard in its residential resources., Peer reviewed, Technical feature, Published., Standard 55, Thermal comfort
Characterizing the community use of an ultralight wheelchair with "on the fly" adjustable seating functions
An ultralight manual wheelchair that allows users to independently adjust rear seat height and backrest angle during normal everyday usage was recently commercialized. Prior research has been performed on wheelchair tilt, recline, and seat elevation use in the community, however no such research has been done on this new class of manual ultralight wheelchair with "on the fly" adjustments. The objective of this pilot study was to investigate and characterize the use of the two adjustable seating functions available on the Elevation™ ultralight dynamic wheelchair during its use in the community. Eight participants had data loggers installed onto their own wheelchair for seven days to measure rear seat height, backrest angle position, occupied sitting time, and distance traveled. Analysis of rear seat height and backrest adjustment data revealed considerable variability in the frequency of use and positions used by participants. There was a wide spread of mean daily rear seat heights among participants, from 34.1 cm to 46.7 cm. Two sub-groups of users were further identified: those who sat habitually at a single typical rear seat height, and those who varied their rear seat height more continuously. Findings also showed that participants used the rear seat height adjustment feature significantly more often than the backrest adjustment feature. This obvious contrast in feature use may indicate that new users of this class of wheelchair may benefit from specific training. While the small sample size and exploratory nature of this study limit the generalizability of our results, our findings offer a first look at how active wheelchairs users are using a new class of ultralight wheelchair with "on the fly" seating adjustments in their communities. Further studies are recommended to better understand the impact of dynamic seating and positioning on activity, participation and quality of life., Peer-reviewed article, Published. Received: April 28, 2016; Accepted: February 26, 2017; Published: March 9, 2017.
The chemical kinetics of shape determination in plants
Plants are integral to our lives, providing food, shelter and the air we breathe. The shapes that plants take are central to their functionality, tailoring each for its particular place in the ecosystem. Given the relatively large and static forms of plants, it may not be immediately apparent that chemical kinetics is involved in, for example, distinguishing the form of a spruce tree from that of a fern. But plants share the common feature that their shapes are continuously being generated, and this largely occurs in localized regions of cell division and expansion, such as the shoot and root apical meristems at either end of a plant’s main axis; these regions remain essentially embryonic throughout the life cycle. The final regular structure of a plant, such as the arrangement of leaves along the main stalk, may seem to follow an overall spatial template; but in reality the spatial patterning is occurring at relatively short range, and it is the temporal unfolding of this small scale patterning which generates the plant’s form. A key part of understanding plant morphogenesis, or shape generation, therefore, is to understand how the molecular determinants of cell type, cell division and cell expansion are localized to and patterned within the actively growing regions. At this scale, transport processes such as diffusion and convection are obvious components of localization, for moving molecules to the correct places; but the reaction kinetics for molecular creation, destruction and interaction are also critical to maintaining the molecular identity and the size regulation of the active regions., Book chapter, Published. Submission date: 04. October, 2011; Review date: 13. November, 2011; Published online: 29. February, 2012.
Climate change-induced carbonation of concrete infrastructure
There is a nearly unanimous consensus among scientists that increasing greenhouse gas emissions, primarily carbon dioxide generated by human activity, are effecting the Earth's climate. For many key parameters, the climate system is already moving beyond the patterns of natural variability within which our societies and economies have developed and thrived. These parameters include global mean surface temperature, sea-level, ocean and ice sheet dynamics, and extreme climatic events. There is a significant risk that many of the trends will accelerate, leading to an increasing risk of abrupt or irreversible climatic shifts. One overlooked area of research is the impact of climate change on concrete infrastructure. Concrete structures form an essential part of the world. Climate change could potentially affect the durability of concrete infrastructure. In this paper, the findings of a study at the University of British Columbia which demonstrate a long-term risk to the durability of steel-reinforced concrete structures in some parts of the world via accelerated carbonation-induced corrosion are presented. Research demonstrates that service lifespans of structures will be affected in the long term, with the need for earlier repairs unless the adverse effects of climate change are taken into account at the time of design., Peer-reviewed article, Published.
A comparative study on generating training-data for self-paced brain interfaces
Direct brain interface (BI) systems provide an alternative communication and control solution for individuals with severe motor disabilities, bypassing impaired interface pathways. Most BI systems are aimed to be operated by individuals with severe disabilities. With these individuals, there is no observable indicator of their intent to control or communicate with the BI system. In contrast, able-bodied subjects can perform the desired physical movements such as finger flexion and one can observe the movement as the indicator of intent. Since no external knowledge of intention is available for individuals with severe motor disabilities, generating the data for system training is problematic. This paper introduces three methods for generating training-data for self-paced BI systems and compares their performances with four alternative methods of training-data generation. Results of the offline analysis on the electroencephalogram data of eight subjects during self-paced BI experiments show that two of the proposed methods increase true positive rates (at fixed false positive rate of 2%) over that of the four alternative methods from 50.8%-58.4% to about 62% which corresponds to 3.6%-11.2% improvement., Peer-reviewed article, Published. Manuscript received June 26, 2006; Revised October 27, 2006; Accepted December 6, 2006.
A comparison between the effects of ozone and alkaline peroxide treatments on TMP properties and subsequent low consistency refining
As part of a program to reduce electrical energy consumption in the refining process, the effects of the ozone and alkaline peroxide treatments on fibre and handsheet properties, prior and subsequent to low consistency (LC) refining, were assessed and compared by applying different levels of ozone and a range of peroxide and alkali charges to a primary stage hemlock thermomechanical pulp (TMP). Both highly alkaline peroxide treatments and ozone treatments decreased the specific energy required for strong mechanical pulp. The improvement in pulp strength through alkaline peroxide treatment mainly resulted from pulp surface changes caused by generation of acid groups. The highly alkaline peroxide treatments significantly increased pulp brightness but did not promote the further fibrillation during the subsequent LC refining. On the other hand, ozone treatments provided tensile strength increases, along with small brightness enhancements for the dark hemlock TMP, and increased the tensile gains obtained through LC refining. The effects of ozone treatments on tensile strength before and after LC refining were the result of pulp surface modifications, fibre swelling, and loss of fibre wall integrity due to non-selective chemical attack. High levels of ozone treatment caused tear strength to decrease during subsequent LC refining., Peer-reviewed article, Published.
Comparisons of large (Vaccinium macrocarpon ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis
There is a long history of use and modern commercial importance of large and small cranberries in North America. The central objective of the current research was to characterize and compare the chemical composition of 2 west coast small cranberry species traditionally used (Vaccinium oxycoccos L. and Vaccinium vitis-idaea L.) with the commercially cultivated large cranberry (Vaccinium macrocarpon Ait.) indigenous to the east coast of North America. V. oxycoccos and V. macrocarpon contained the 5 major anthocyanins known in cranberry; however, the ratio of glycosylated peonidins to cyanidins varied, and V. vitis-idaea did not contain measurable amounts of glycosylated peonidins. Extracts of all three berries were found to contain serotonin, melatonin, and ascorbic acid. Antioxidant activity was not found to correlate with indolamine levels while anthocyanin content showed a negative correlation, and vitamin C content positively correlated. From the metabolomics profiles, 4624 compounds were found conserved across V. macrocarpon, V. oxycoccos, and V. vitis-idaea with a total of approximately 8000–10 000 phytochemicals detected in each species. From significance analysis, it was found that 2 compounds in V. macrocarpon, 3 in V. oxycoccos, and 5 in V. vitis-idaea were key to the characterization and differentiation of these cranberry metabolomes. Through multivariate modeling, differentiation of the species was observed, and univariate statistical analysis was employed to provide a quality assessment of the models developed for the metabolomics data., Peer-reviewed article, Published.
A computation of U-Factor for an entire vented attic assembly using a 2D model
The overall U-factor values for an attic assembly are usually computed with the ANSI/ASHRAE/IES based R-value (thermal resistance) conversion. In the ANSI/ASHRAE/IES Standard 90.1 (2010), the effects of attic air resistance, roof pitch and attic width are not taken into account while calculating the U-Factor values. In addition, the R-value is estimated using a one dimensional thermal resistance model. In ventilated attics, where the insulation near the roof sheathing is tapered, it is difficult to find the correct R-value of the attic system as the heat transfer becomes two dimensional. In this paper, a 2-dimensional CFD model is developed for various insulation R-values and insulation taper angles near roof decks. COMSOL Multiphysics 4.4 is used to model and analyse the attic structure. Results show that a discrepancy in overall U-factor for entire attic assembly between the developed model and the existing standard estimation. These results are pronounced for lower slope roofs with high insulation thickness., Peer-reviewed article, Published. Available online 30 December 2015.
Computations of post-inductive dynamics in axolotl heart formation
This paper reports modelling of heart localization in the axolotl (Ambystoma mexicanum). The region of heart specification in the mesoderm defined by classical induction from the endoderm is larger than the area of final myocardial differentiation. For localizing the area of differentiation within the area of specification, we postulate a mesoderm in response to induction from the endoderm. This mechanism generates a spatial pattern for two chemicals, an activator and an inhibitor, corresponding to the area of myocardial differentiation. We postulate a diffusible chemical rescuer, which is absent in the cardiac lethal mutant, and which is a precursor to the reaction-diffusion mechanism. The activator, inhibitor, rescuer, and product of endodermal induction are presented in an enzyme mechanism with rate equations similar to the Gierer-Meinhardt equations. These equations were solved numerically in both one and two spatial dimensions. We have attained quantitative agreement with the experimental data for sizes of tissue regions and for times to heartbeat. Experiments modelled include wild-type heart localization as well as both in vitro and in vivo rescue of cardiac lethal mesoderm with wild-type mesoderm. Based upon the parameters necessary to model heart localization, we make a series of predictions. We predict: a specific profile for the endodermal inducer gradient; the possibility of producing multiple hearts in vivo; and a greater contribution to the heart from the wild-type mesoderm for in vivo transplants with cardiac lethal mesoderm. We make some suggestions as to the possible chemical nature of the substances in the model. We indicate that the inhibitory field and mechanochemical theories are probably not as promising as reaction-diffusion for the mechanism of heart localization., Peer-reviewed article, Published. Received January 24, 1994; accepted April 7, 1994.
Computer representation to support conceptual structural design within a building architectural context
Computer support for conceptual design of building structures is still ineffective, mainly because existing structural engineering applications fail to recognize that structural design and architectural design are highly interdependent processes. This paper describes a computer representation called StAr (structure-architecture), aimed to act as a common basis for collaboration between architects and engineers during conceptual structural design. The StAr representation describes the structural system as a hierarchy of entities with architectural counterparts, which enables the direct integration of the structural system to the building architecture as well as engineering feedbacks to the architect at various abstraction levels. The hierarchical structural description implements a top-down design approach where high-level structural entities, which are defined first, facilitate the configuration of lower-level entities whose functions in turn contribute to those of the higher-level wholes that they belong to. The representation has been built on top of a geometric modeling kernel that allows reasoning based on the geometry and topology of the design model, which is paramount during early design stages. A proof-of-concept software prototype, called StAr prototype, has been developed and a test example demonstrates how the representation can support the different activities that take place during the conceptual design of building structures., Peer reviewed, Technical paper, Received: September 16, 2004 ; Accepted: October 27, 2004 ; Published online: March 01, 2006, StAr, Conceptual design
Concept proposal for a detachable exoskeleton-wheelchair to improve mobility and health
Proceedings of 2013 IEEE International Conference on Rehabilitation Robotics, June 24-26, 2013 Seattle, Washington USA. Wheelchair use has consequences to quality of life in at least two areas: 1) health issues such as pressure sores and chronic overuse injury; and 2) access problems due to the inaccessible nature of the built and natural environments that are most amenable to upright postures. Even with these concerns, wheelchairs are still the best form of mobility for many people (e.g. they are relatively easy to transfer into and propel). However, wheelchairs are simply not transformative, i.e. they do not allow a person with a disability to attain a level of mobility performance that approaches that of their non-disabled peers, nor do they typically allow for face to face interactions and full participation in the community. Wheelchairs also do not typically support ongoing therapeutic benefits for the user. To address the inadequacy of existing wheelchairs, we are merging two evolving technologies into a coherent new mobility device. The first is dynamic wheeled mobility, which adds significant functionality to conventional wheelchairs through the use of on-the-fly adjustable positioning. The second is powered walking exoskeletons, which enable highly desired standing and walking functions, as well as therapeutic benefits associated with rehabilitation gait training. Unfortunately, exoskeletons have significant usability concerns such as slow speed, limited range, potential to cause skin issues, and difficult transfers. A new concept of docking a detachable exoskeleton to a wheeled frame has been developed to address these issues. The design goal is a single mobility device that not only optimizes daily activities (i.e. wheelchair seating and propulsion with dynamic positioning), but also serves as an easy-to-use rehabilitation tool for therapeutic benefits (i.e. a detachable powered exoskeleton for walking sojourns). This has significant potential benefits for the lives of people with mobility impairments., Conference paper, Published.

Pages