BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

Trust as a precursor to belief revision
Belief revision is concerned with incorporating new information into a pre-existing set of beliefs. When the new information comes from another agent, we must first determine if that agent should be trusted. In this paper, we define trust as a pre-processing step before revision. We emphasize that trust in an agent is often restricted to a particular domain of expertise. We demonstrate that this form of trust can be captured by associating a state partition with each agent, then relativizing all reports to this partition before revising. We position the resulting family of trust-sensitive revision operators within the class of selective revision operators of Ferme and Hansson, and we prove a representation result that characterizes the class of trust-sensitive revision operators in terms of a set of postulates. We also show that trust-sensitive revision is manipulable, in the sense that agents can sometimes have incentive to pass on misleading information., Article, Published.
Trust-sensitive belief revision
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence in Buenos Aires, Argentina, 25–31 July 2015. Belief revision is concerned with incorporating new information into a pre-existing set of beliefs. When the new information comes from another agent, we must first determine if that agent should be trusted. In this paper, we define trust as a pre-processing step before revision. We emphasize that trust in an agent is often restricted to a particular domain of expertise. We demonstrate that this form of trust can be captured by associating a state partition with each agent, then relativizing all reports to this partition before revising. We position the resulting family of trust-sensitive revision operators within the class of selective revision operators of Ferme and Hansson, and we examine its properties. In particular, we show how trust-sensitive revision is manipulable, in the sense that agents can sometimes have incentive to pass on misleading information. When multiple reporting agents are involved, we use a distance function over states to represent differing degrees of trust; this ensures that the most trusted reports will be believed., Conference paper, Published.
The tyranny of chronological age
This paper presents an analysis of a phenomenon known as "The Relative Age" effect. When assessing the innate ability (or talent) of individual children who are grouped into age cohorts, systematic errors occur due to differences in biological maturity. A structural model of a multi-period progression through levels (or grades) that employs screening and selection is developed. Through a series of simulations, impact of the relative age on the of selection process is analyzed., Thesis, Draft published.
Use of hygrothermal numerical modeling to identify optimal retrofit options for high-rise buildings
Proceedings of 12th International Heat Transfer Conference: 18 August 2002, Grenoble, France. Using numerical modelling to simulate and predict the hygrothermal (i.e., combined thermal and moisture)performance of building envelopes is very recent. Key questions include: how to model accurately coupled heat-air and capillary moisture transports in building envelope components; a satisfactory definition of a set of representative environmental boundary conditions to be used for long-term hygrothermal calculations; how to characterize the moisture- and temperature-dependent properties; the effect of aging and cyclic environmental conditions on porous building materials; and how to develop sound criteria to predict the moisture durability of building envelope components. This paper presents the findings of a research project involving detailed hygrothermal modelling. The heat, air and moisture results demonstrated that the in-house model could be adapted successfully for high-rise building calculations. The findings also show how the long-term hygrothermal performance of typical wall systems can be assessed using numerical modelling. A short description of an advanced in-house heat, air and moisture model, hygIRC, is also presented., Conference paper, Published. A version of this document is published in: 12th International Heat Transfer Conference, Grenoble, France, Sept. 18, 2002, pp. 165-170.
Using EA to study the evolution of GRNs controlling biological development
This chapter surveys recent developments in simulating the evolution of GRNs in developmental biology. Over the past two decades, computational biologists have developed a number of approaches to study how developmental GRNs evolve. This has led to a number of breakthroughs in understanding the mechanisms of how species maintain their body plans, and how they evolve or speciate in response to environmental perturbations. EA uses the general evolutionary processes of repeated mutation, reproduction and selection in optimization problems. The progress in computational biology described here has deepened and refined understanding of the biological principles underlying these processes. Our aim is for this chapter to provide some inspiration to computer scientists in EA to incorporate new biologically inspired techniques. We feel this offers a large potential for improving EA efficiency. In turn, computational biology could greatly benefit from EA research, for instance in multi-objective optimization, coding of multiscale problems, and efficiencies in solution techniques. Following a brief survey of the major trends in the computational biology approaches, we discuss the refinements these have made to understanding evolutionary mechanisms. In particular, we discuss the factors affecting GRN evolvability and robustness; the effect different genetic alteration mechanisms (e.g. types of mutation) have on evolutionary speed and robustness; the role of network growth; modelling co-evolution; modelling multi-factor control of gene expression; and applying these techniques to the evolution of GRNs controlling spatially-dependent gene expression (underlying embryonic tissue differentiation). We finish with a brief summary of how these might be incorporated into and improve EA searches., Book chapter, Published.
Using ranking functions to determine plausible action histories
Proceedings of the Sixth Workshop on Nonmonotonic Reasoning, Action, and Change (NRAC-05), Edinburgh, Scotland, 2005. We use ranking functions to reason about belief change following an alternating sequence of actions and observations. At each instant, an agent assigns a plausibility value to every action and every state; the most plausible world histories are obtained by minimizing the sum of these values. Since plausibility is given a quantitative rank, an agent is able to compare the plausibility of actions and observations. This allows action occurrences to be postulated or refuted in response to new observations. We demonstrate that our formalism is a generalization of our previous work on the interaction of revision and update., Conference paper, Published.
Using thermal comfort models in health care settings
A fundamental challenge in assessing thermal comfort in health care settings is providing comfortable conditions for the diverse medical services and concurrent occupancy groups. Thermal comfort standards rely on thermal comfort models to predict thermal conditions in spaces that are satisfactory for human occupancy. However, thermal comfort standards and models have not been developed from experimental or field data in health care settings or with health-care-specific concerns in mind; therefore, their validity to assist in environmental health care design has been questioned. This study is motivated by the practical concerns with using thermal comfort models to assist in the design of HVAC systems for health care facilities. The ASHRAE thermal comfort standard (ASHRAE 2017a) requires a set of environmental and personal factors that depend onthe occupants’ activity levels and clothing insulation. Outlined in this study are the challenges in providing thermal comfort in rooms with patients and medical staff with varying activity levels and clothing insulation. Other challenges explored include looking at activity levels that are near or above the research that was used to develop the comfort models and the lack of insulation values for the clothing required to be worn by some medical personnel. This study also reviews the complexity and diversity of patients, their levels of health, and the care they are receiving relative to the assessment of thermal comfort. A final complexity discussed is applying the steady-state thermal comfort models to the transient nature of occupants in health care facilities. A literature review of thermal comfort research in health care settings is discussed and summarized. The focus has been on hospitals in general, with some studies on operating and patient rooms. A general conclusion points to patients being more tolerant of indoor conditions than predicted by the thermal comfort models and, generally, patients are more accepting of higher temperatures than the staff. The studies reviewed demonstrate that thermal comfort models can be applied with caution to rooms that serve medical staff and healthy patients—patients that are healthy in terms of thermal sensation and regulation. This paper exposes increased complexities in addressing thermal comfort in health care settings and concludes that given the critical nature of health care facilities, as well as the levels of occupant diversity and specialization, increased detail and attention to individualities are needed. The paper also reveals a lack of personal and environmental data to enable reliable thermal comfort assessments., Peer reviewed, Conference proceeding, Published., ASHRAE thermal comfort standard, Thermal comfort, HVAC systems
Utility-scale renewable energy systems
Renewable technologies such as solar or wind generation are favoured by many people concerned about the environmental and safety consequences of continued reliance on fossil-fuelled and nuclear generation. This paper focuses on two features of a societal move to renewable energy generation: their land area requirements, and the energy storage required to deliver energy services when wind and solar fluxes are inadequate. We use the IESVic Energy System Model to estimate the minimum land area and energy storage requirements for wind and solar photovoltaic generation to meet the entire 2000 US electrical demand. We model 13 locations for solar generation and 11 for wind, both singly and in various combinations, over several years of hourly climate data, and find that solar and wind generation facilities would require minimum land areas of 41,000 km2 and 193,000 km2 respectively. The smallest photovoltaic system requires storage equivalent to 76 days of average demand, while 108 days are required for wind. The generating area required by the smallest wind system is comparable to the total urbanized area of the contiguous United States, without considering land requirements for resource extraction, transmission, waste disposal, and energy storage., Article
Variations in the hygrothermal properties of several wood-based building products
Proceedings of Second International Building Physics Conference: 14 September 2003, Leuven, Belgium. A systematic investigation of the hygrothermal properties of a number of oriented strand boards, plywood products, wood fibreboards and composite wood sidings has resulted in new information on the variations of thermal conductivity, water vapour permeability, moisture diffusivity, sorption- desorption-suction isotherms, water absorption coefficient and air permeability of these classes of products in North America. The experimental and analytical procedures used in the investigation are all based eitheron International Standards or on well-documented and peer-reviewed approaches. This paper presents the description of the products in each category and detailed information on the range of properties. The details include, density and temperature dependences of thermal conductivity,dependence of vapour resistance factor on relative humidity, dependence of moisture diffusivity on moisture concentration, equilibrium moisture content for the full range of relative humidity, variations in the water absorption coefficients and dependence of air permeability on pressure difference., Conference paper, Published. A version of this document is published in: Research in Building Physics, Leuven, Belgium, Sept. 14-18, 2003, pp. 35-42.
Verification and validation
The hygrothermal performance of building envelope systems is dictated by their responses to combined heat, air and moisture fluctuations produced by exterior and interior conditions. Research has focused on both laboratory experimentation and modeling of envelope systems by computer programs (hygrothermal tools). Experimental studies played a crucial role in the development of hygrothermal tools, and continue to offer useful information for their improvement. To be used with confidence, however, hygrothermal tools must be verified and, if possible, validated. To date, no comprehensive schemes for benchmarking hygrothermal tools exist as, for example, exist for energy simulation tools. Three comparisons are typically used to show the practical merits of simulation tools: inter-model, analytical, and empirical. This paper demonstrates how confidence in a 1-dimensional hygrothermal simulation tool can be built by such comparisons, and proposes them as the basis for a verification and validation methodology., Research report, Published.
What's stopping sustainability?
Despite understanding the need to become sustainable, and knowing some of the actions required to reach this end, barriers exist that prevent individuals, and society, from adopting actions that support sustainability. To understand what some of these barriers are, the case of Vancouver's attempt to implement the 1990 Clouds of Change recommendations has been analysed. Councillors, civic staff, Task Force on Atmospheric Change members and citizens who participated in the Task Force's public participation process were asked to identify what they perceived as the barriers to action-taking by the City to implement the recommendations. Fifty-eight people were interviewed. The barriers identified fell within three categories: Perceptual/Behavioural, Institutional/Structural and Economic/Financial. Analysis reveals how the barriers functioned, which ones were perceived as causing the greatest impediment to implementation of the recommendations, what conditions facilitated implementation of some recommendations, and suggestions regarding how some barriers may be overcome in the future. The six most commonly cited barriers were: lack of understanding about the issues, perceived lack of empowerment, competing issues, inadequate funds, fear of losing constituent support and limitation of jurisdiction. Other important barriers were: differences in perception, inappropriate structure of government (vertical), weak linkages among the policies of civic and senior levels of government and weak communication linkages between government and its constituents. Many of the barriers identified contributed to a low degree of civic participation in the City. Suggestions for improving government effectiveness, in terms of its ability to implement the Clouds of Change recommendations focussed on ways of improving civic participation among citizens. Suggestions regarding the amendment of government structures and decision-making processes are also presented., Thesis, Published.
Which foot? A comparative effectiveness study of subject-generated ankle kinetics as a measure of prosthetic foot function across a range of K levels
This double-blind randomized controlled trial offers evidence that flexible energy storage return (ESR) feet produce lower peak moments during walking and are preferred by trans-tibial amputees., Research report, Published.

Pages