BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

Stochastic dynamics of gene expression in developing fly embryos
Proceedings of 2017 International Conference on Noise and Fluctuations (ICNF), Vilnius, Lithuania on 20-23 June 2017. Segmentation of the developing insect body is preceded by cell-specific gene expression. In fruit flies (Drosophila), pair-rule genes are expressed in spatial stripes specifying segment fates. Transcription of the even-skipped (eve) pair-rule gene was recently shown to proceed in noisy bursts. Here, we develop a stochastic model of eve transcription from DNA to mRNA. This indicates that eve transcription proceeds at two rates, with a slow rate providing basal production and a fast rate allowing for high mRNA output. This two-rate transcription may afford more reliability in mRNA output, and therefore the protein levels which specify cell type, than a simple on-off (one-rate) mechanism., Conference paper, Published.
Strengthening of timber beams using externally-bonded sprayed fibre reinforced polymers
The use of Fibre Reinforced Polymers (FRP) has grown in popularity in the construction industry. FRP has proven useful in the retrofit of various types of structural elements. It may be used for the strengthening of beams, the seismic upgrade of walls panels, as well as the jacketing of columns to provide confinement. There exist several methods of FRP application for the case of structural retrofits. These include the application of pre-prepared FRP mats, or application of FRP via the wet lay-up process. However, a new technique developed at the University of British Columbia allows for the application of FRP in the form of a spray. Externally bonded Sprayed FRP (SFRP) is known to increase strength and energy absorption capacity of a retrofitted member as well as, or better than, FRP sheets. However, tests have primarily been carried out on concrete members only. An area of interest, into which not much research has been conducted, is the application of SFRP to timber. Timber bridges are extensively used in many parts of the world. Often due to remoteness and practical constraints, it is impossible to apply FRP sheets to retrofit these bridges. SFRP would be a much easier method of FRP application. This study looked at the application of SFRP to Douglas Fir (D.Fir) Beam specimens subjected to 3-Point Flexural Loading only. The specimens were treated with either a water based (Borocol) or oil borne (Creosote) antifungal preservative prior to being sprayed with FRP. Different combinations of adhesives/bonding agents including Hydroxymethylated Resorcinol and Polymeric Isocyanates were used to try to develop a strong bond. When considering using only chemical adhesives to obtain a proper bond between the two constituents of the composite, use of HMR is recommended for timber which is untreated or has been treated with a water borne preservative such as Borocol, while a pMDI adhesive such as AtPrime 2 is recommended for timber treated with an oil borne preservative such as Creosote. For Non Creosoted beams, adhesives did not generate as significant of a strength gain. For Creosoted beams, adhesives may be sufficient to generate significant strength gain when SFRP is applied to a beam. Considering that most structures in use would probably have been treated with a preservative similar to Creosote, in practice, AtPrime 2 or some other some sort of pMDI would probably be the adhesive of choice. Based on the results of the study, it is possible to say that the application of SFRP to retrofit/rehabilitate timber structures shows considerable promise. If a decent bond is achieved between the composite constituents, it is possible to substantially increase the ultimate flexural strength of the member, as well as drastically increase its ductility and energy absorption capacity. It is recommended that further tests be carried out using different types of loading schemes, geometrical configurations of SFRP, other types of anchorage, and development of a proper analytical model before the method is adopted for widespread use., Thesis, Published.
Structured documents
Proceedings of 2012 European Intelligence and Security Informatics Conference (EISIC) in Odense, Denmark 22-24 Aug. 2012. Much of the information exchanged between agents over a network is encapsulated in XML documents. An XML document has a tree structure, and the meaning of the document can be understood in terms of a set of label-value pairs. The content of a document is often secured through digital signatures applied to different sections, while the document is passed between several agents. In this paper, we illustrate that this process is insecure in the sense that a malicious agent can deceive an honest agent to hold beliefs that are untrue. We provide a formal framework for analyzing the security of structured documents, based on the implicit epistemic impact that a signed document will have on a recipient. This kind of analysis can provide significant insight into deception and fraud detection., Conference paper, Published.
Student emotions with an edu-game
Proceedings of 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2-5 Sept. 2013. We present the results of a study that explored the emotions experienced by students during interaction with an educational game for math (Heroes of Math Island). Starting from emotion frameworks in affective computing and education, we considered a larger set of emotions than in related research. For emotion labeling, we employed a standard method that relies on trained judges to report emotions over 20-second intervals. However, we asked judges to report all observed emotions in each interval, as opposed to only choosing one, as is standard practice. This variation allows us to discuss the appropriateness of this interval for emotion labeling. We present a detailed analysis of inter-coder reliability, both aggregated and over individual students, that considers not only the matching by judges over emotion type, but also the number of emotions detected., Conference paper, Published., Peer reviewed
Students use new lab to test electrical and cybersecurity systems
2016 | 2017 Project Highlights Short piece about BCIT Smart Microgrid designs., Article, Published
Study on the mechanical and environmental properties of concrete containing cathode ray tube glass aggregate
Cathode ray tube (CRT) glass is considered a hazardous material due to its lead toxicity. In addition, current disposal practices are being phased out due to their adverse environmental impacts. In this project, CRT glass was used as a fine aggregate replacement in concrete. Life-cycle material characterization was conducted by evaluating the durability and strength of the CRT-Concrete. Leaching tests were also conducted to investigate whether the material meets drinking water limits for Pb. Test results show that the plastic state of the CRT-Concrete was affected by the angularity of the glass particles. Moreover, the compressive strength of CRT-Concrete met and exceeded that of the control specimen. However, CRT-Concrete was susceptible to expansive alkali-silica reactions when more than 10% CRT replacement was used. Environmental leaching results show that lead concentrations from CRT-Concrete are below the drinking water limits depending on the CRT volume replacement and if biopolymers are used., Peer reviewed, Peer reviewed article, Received 26 July 2012 ; Accepted 24 March 2013 ; Available online 28 April 2013., Durability, CRT, Heavy metals, Glass recycling, Waste management, Sustainable concrete
A survey of stakeholder perspectives on exoskeleton technology
Background Exoskeleton technology has potential benefits for wheelchair users' health and mobility. However, there are practical barriers to their everyday use as a mobility device. To further understand potential exoskeleton use, and facilitate the development of new technologies, a study was undertaken to explore perspectives of wheelchair users and healthcare professionals on reasons for use of exoskeleton technology, and the importance of a variety of device characteristics. Methods An online survey with quantitative and qualitative components was conducted with wheelchair users and healthcare professionals working directly with individuals with mobility impairments. Respondents rated whether they would use or recommend an exoskeleton for four potential reasons. Seventeen design features were rated and compared in terms of their importance. An exploratory factor analysis was conducted to categorize the 17 design features into meaningful groupings. Content analysis was used to identify themes for the open ended questions regarding reasons for use of an exoskeleton. Results 481 survey responses were analyzed, 354 from wheelchair users and 127 from healthcare professionals. The most highly rated reason for potential use or recommendation of an exoskeleton was health benefits. Of the 17 design features, 4 had a median rating of very important: minimization of falls risk, comfort, repair and maintenance cost, and purchase cost. Factor analysis identified two main categories of design features: Functional Activities and Technology Characteristics. Qualitative findings indicated that health and physical benefits, use for activity and access reasons, and psychosocial benefits were important considerations in whether to use or recommend an exoskeleton. Conclusions This study emphasizes the importance of developing future exoskeletons that are comfortable, affordable, minimize fall risk, and enable functional activities. Findings from this study can be utilized to inform the priorities for future development of this technology., Peer-reviewed article, Published. Submission date 13 September 2014 ; Acceptance date 12 December 2014 ; Publication date 19 December 2014.
Taxonomizing features and methods for identifying at-risk students in computing courses
Proceedings from the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education. Since computing education began, we have sought to learn why students struggle in computer science and how to identify these at-risk students as early as possible. Due to the increasing availability of instrumented coding tools in introductory CS courses, the amount of direct observational data of student working patterns has increased significantly in the past decade, leading to a flurry of attempts to identify at-risk students using data mining techniques on code artifacts. The goal of this work is to produce a systematic literature review to describe the breadth of work being done on the identification of at-risk students in computing courses. In addition to the review itself, which will summarize key areas of work being completed in the field, we will present a taxonomy (based on data sources, methods, and contexts) to classify work in the area., Peer reviewed, Conference paper, Published.
Temperature and humidity distributions in mid-rise residential building suites
14th Canadian Conference on Building Science and Technology, Toronto, Canada, October 29th-30th, 2014. It is essential to design and operate buildings with good indoor air quality as people spend most of their time indoor. Their productivity, comfort and health depend on the quality of the indoor air. In addition to other air quality parameters, indoor humidity and temperature need to be controlled and maintained to acceptable ranges. These conditions may not be uniform within the house/building due to local heat and moisture sources and absence of an effective indoor air mixing mechanism as in the case of in buildings with baseboard heating systems. Localized high humidity creates favourable conditions for localized mold growth, poor indoor air quality and building envelope damage. In this paper, the indoor humidity and temperature distributions within four suites (designated as Suite ‘A’, ‘B’, ‘C’ and ‘D’) in a six-storey multi-residential building are studied. A total of 22 rooms are monitored with indoor temperature and relative humidity data loggers, and the outdoor climatic conditions are measured with a weather station for over a year. The hygrothermal performances of exterior walls in the master bedrooms of the respective suites are assessed. Analysis of the measured data suggests that the temperature variations between the rooms (bedrooms, living room, kitchen excluding bathroom) are relatively low during the summer period (mean temperature difference less than 1oC) compared to the winter period where the variations between the rooms can be as high as 2oC. The excess humidity differences between the rooms, excluding the kitchens, are in the range of 0.2 g/m 3 to 1.0 g/m 3 during both winter and summer periods, whereas the excess humidity fluctuations within the rooms are fairly the same and have standard deviation values between 0.8 g/m 3 and 1.0 g/m 3. Excess humidity is defined as the difference between the indoor and outdoor absolute humidities, quantities that are derived from the simultaneously measured temperature and relative humidity of the indoor and outdoor locations. Hygrothermal simulation results of exterior wall systems indicate that, in a mild coastal climate, the winter average indoor relative humidity shall be below 43% (for a seasonal average indoor temperature of 20oC) to avoid building envelope moisture damage., Peer reviewed article, Published.
Thermal comfort
Meeting and exceeding requirements for indoor air quality, thermal comfort, and acoustic and visual quality can lead to optimized environments that maximize well-being and performance. However, surveys on numerous buildings have revealed that satisfactory indoor environmental conditions are often not achieved. This suggests the whole industry needs more systematic methods to analyze and design indoor environments., Peer reviewed, Technical feature, Published 2018., Thermal comfort, Thermal environmental quality, ASHRAE Standard 55-2017
Thermostat setback effect in whole building performance
Proceedings of Building Physics Symposium: 29 October 2008, Leuven, Belgium. This paper describes the use of a whole building hygrothermal model (HAMFitPlus) to analyze the energy savings resulting from three programmable thermostat setting schemes in a real occupied residential house. It discusses the effect of these schemes on the indoor relative humidity and moisture performance. In the first thermostat-setting scheme, the indoor temperature is maintained constant at 21 at all time (no set-back). In the second thermostat-setting scheme, the indoor temperature is maintained at 21ºC from 7:00 to 21:00 h, and then setback to 17ºC for the remaining hours (21:00 to 7:00 h)., Conference paper, Published. A version of this document is published in: Building Physics Symposium, Lueven, Belgium, October 29-31, 2008, pp. 1-5.
Towards gender diversity in Computer Science postsecondary education
Proceedings from AERA 2018 Conference, 12 pp., New-York, NY, USA., Peer reviewed, Conference paper, Gender studies, Postsecondary education, Women's issues

Pages