BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Pages

Hygrothermal performance of exterior wall systems using an innovative vapour retarder in Canadian climate
Proceeding of the 4th International Building Physics Conference: 15 June 2009, Istanbul, Turkey. This paper provides highlights of the research work carried out at the National Research Council Canada, Institute for Research in Construction on assessing the hygrothermal performance of wall systems that included this innovative vapour retarder (Note: Vapour Barrier in Canadian terminology is equivalent to Vapor retarder in US terminology). The performance of walls was assessed when subjected to eastern coastal climate conditions of Halifax, one of the four Canadian climatic locations used in this study. A wood-framed stucco clad wall was the reference assembly. Results from different cases based on the variation of vapour control strategies and their effect on the hygrothermal performance of the wall systems are analysed. The results for the Halifax climate location indicate that the installation of a humidity controlled, innovative vapour retarder is a recommendable solution for the envelope design of residential buildings of these locations with moderate or high water vapour permeance of the interior paint. In this study, the advanced hygrothermal tool, hygIRC, was used to perform the hygrothermal performance analysis of the wall systems., Peer reviewed article, Published. A version of this document is published in: 4th International Building Physics Conference, Istanbul, Turkey, June 15-18, 2009, pp. 1-8.
Hygrothermal performance of RH-dependent vapour retarder in Canadian coastal climate
Proceedings of 12th Canadian Conference of Building Science and Technology: 06 May 2009, Montreal, QC. The hygrothermal performance of wood-frame wall with stucco cladding exposed to the coastal climate of Vancouver, BC, is studied. The primary objective of the study is to compare the moisture management performance of two vapour barriers: the relatively new SmartVapour Retarder (SVR) and commonly used Polyethylene sheet. For a reference purpose a wood-frame wall with no vapour barrier is considered as well. The performances of these three walls, which are exposed to the same indoor and outdoor climatic loads, are compared with respect to their dynamic responses to two simulation variables: interior moisture load (simulated water intrusion in the stud cavity) and paint on the interior gypsum board. The water intrusion is assumed to be through defect areas and the quantity is correlated with the amount of wind-driven rain that the wall is exposed to. The hygrothermal simulation results suggest that adoption of SVR as a vapour barrier yields better moisture management of the sheathing board (OSB) for any conditions considered in this paper including internal moisture load and interior paint. But, in coastal climate, it may have adverse effect on the moisture management of the interior gypsum board, in cases where water leaks into the cavity and the interior gypsum board is painted with low-vapour permeance paint., Peer reviewed article, Published. A version of this document is published in: 12th Canadian Conference of Building Science and Technology, Montreal, QC, May 6-8, 2009, pp. 1-12
Hygrothermal performance of ventilated attic in marine climate under different ceiling air tightness
14th International Conference on Indoor Air Quality and Climate (Indoor Air 2016), July 3-8, 2016, Ghent, Belgium. An indoor to attic air leakage and vice-versa significantly affect indoor air, thermal comfort and the hygrothermal performance in both living space and unconditioned space. In cold and marine climates an air leakage from living space to an attic brings a relatively high relative humidity to the attic space. This effect is primarily responsible for condensation in attic structural parts such as roof sheathings. In this paper, the hygrothermal performance of a ventilated attic in wet costal climates under different ceiling air leakage is studied. A benchmarked whole building Heat-Air-Moisture model named HAMFit is used to study hygrothermal performance of ventilated attics in marine climates. The attic is modelled as 2-dimensional geometry with coupled heat transfer, moisture transport and a turbulence Computational Fluid Dynamics through attic space and porous structural parts of the attic. A vent ratio of 1/300 and three types normalized leakage area (tight, normal and leaky) are used to analyse how the moisture transport behaves in ventilated space. A winter weather data of city of Vancouver, BC is used to represent a wet marine climate. Our findings show specific locations in the attic structure are more exposed to moisture related problems and the air circulation and temperature distribution due to ventilation under multiple ceiling air leakage scenarios are presented. Hygrothermal performance of ventilated attic in marine climate under different ceiling air tightness., Conference paper, Published.
Hygrothermal properties of exterior claddings, sheathing boards, membranes and insulation materials for building envelope design
Proceedings of Thermal Performance of the Exterior Envelopes of Whole Buildings X International Conference: 02 December 2007, Clearwater, Florida. Testing was conducted to determine those construction material properties that affect the movement of heat, air, and moisture in building envelopes. The paper reports the density, thermal conductivity, equilibrium moisture content, water vapor permeability, water absorption coefficient, liquid diffusivity, and air permeability of twenty-three building materials commonly used in North American including: exterior claddings, exterior sheathing boards, membranes and insulations. The paper also discusses the experimental and analytical procedures used to determine these properties., Conference paper, Published. A version of this document is published in: Proceedings of Thermal Performance of the Exterior Envelopes of Whole Buildings X, Clearwater, Florida, Dec. 2-7, 2007, pp. 1-16.
Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems
Fibre properties and the biochemical composition of cell walls are important traits in many applications. For example, the lengths of fibres define the strength and quality of paper, and lignin content is a critical parameter for the use of biomass in biofuel production. Identifying genes controlling these traits is comparatively difficult in woody species, because of long generation times and limited amenability to high-resolution genetic mapping. To address this problem, this study mapped quantitative trait loci (QTLs) defining fibre length and lignin content in the Arabidopsis recombinant inbred line population Col-4×Ler-0. Adapting high-throughput phenotyping techniques for both traits for measurements in Arabidopsis inflorescence stems identified significant QTLs for fibre length on chromosomes 2 and 5, as well as one significant QTL affecting lignin content on chromosome 2. For fibre length, total variation within the population was 208% higher than between parental lines and the identified QTLs explained 50.58% of the observed variation. For lignin content, the values were 261 and 26.51%, respectively. Bioinformatics analysis of the associated intervals identified a number of candidate genes for fibre length and lignin content. This study demonstrates that molecular mapping of QTLs pertaining to wood and fibre properties is possible in Arabidopsis, which substantially broadens the use of Arabidopsis as a model species for the functional characterization of plant genes., Peer-reviewed article, Published. Received 3 April 2012; Revised 11 October 2012; Accepted 15 October 2012.
Impact of electrical intertie capacity on carbon policy effectiveness
This study investigates the potential cost and emissions reductions that result from an increase in electricity transmission capacity between Canada's two westernmost provinces: Alberta, a fossil fuel dominated jurisdiction, and British Columbia, a predominantly hydroelectric jurisdiction. A bottom-up model is used to find the least cost electricity generation mix in Alberta and British Columbia under different carbon policies. The long-term evolution of the electricity system is determined by minimizing net present cost of electricity generation for the time span of 2010–2060. Different levels of intertie capacity expansion are considered together with a variety of carbon tax and carbon cap scenarios. Results indicate that increased intertie capacity reduces the cost of electricity and emissions under carbon pricing policies. However, the expandable intertie does not encourage greater adoption of variable renewable generation. Instead, it is used to move low-cost energy from the United States to Alberta. The optimal intertie capacity and cost reduction of increased interconnectivity increases with more restrictive carbon policies., Peer-reviewed article, Published. Received 3 March 2016, Revised 23 September 2016, Accepted 12 October 2016, Available online 15 November 2016.
Impact of EV penetration on Volt–VAR Optimization of distribution networks using real-time co-simulation monitoring platform
This paper aims to investigate the impact of different Electric Vehicle (EV) penetration on quasi real-time Volt–VAR Optimization (VVO) of smart distribution networks. Recent VVO solutions enable capturing data from Advanced Metering Infrastructure (AMI) in quasi real-time to minimize distribution networks loss costs and perform Conservation Voltage Reduction (CVR) to save energy. The emergence of EVs throughout distribution feeder increases grid complexity and uncertainty levels that could affect AMI-based VVO objectives. Hence, this paper primarily introduces an AMI-based VVO engine, able to minimize grid loss and Volt–VAR control assets operating costs while maximizing CVR benefit. It then presents a real-time co-simulation platform comprised of the VVO engine, grid model in a real-time simulator and monitoring platform, communicating with each other through DNP.3 protocol, to test the precision and performance of AMI-based VVO in presence of different EV penetration levels. Accordingly, 33-node distribution feeder is studied through different EV penetration scenarios. The results show significant changes in AMI-based VVO performance especially in CVR sub-part of VVO according to EV model and type. Thus, this study could lead near future VVO solutions to gain higher levels of accuracy and efficiency considering smart microgrid components such as EV in their models., Article, Published. Received 27 November 2015, Revised 8 January 2016, Accepted 22 January 2016, Available online 16 February 2016.
The impact of spinal cord injury on sexual function
Study Design: Secure, web-based survey. Objectives: Obtain information from the spinal cord injured (SCI) population regarding sexual dysfunctions, with the aim of developing new basic science and clinical research and eventual therapies targeting these issues. Setting: Worldwide web. Methods: Individuals 18 years or older living with SCI. Participants obtained a pass-code to enter a secure website and answered survey questions. A total of 286 subjects completed the survey. Results: The majority of participants stated that their SCI altered their sexual sense of self and that improving their sexual function would improve their quality of life (QoL). The primary reason for pursuing sexual activity was for intimacy need, not fertility. Bladder and bowel concerns during sexual activity were not strong enough to deter the majority of the population from engaging in sexual activity. However, in the subset of individuals concerned about bladder and/or bowel incontinence during sexual activity, this was a highly significant issue. In addition, the occurrence of autonomic dysreflexia (AD) during typical bladder or bowel care was a significant variable predicting the occurrence and distress of AD during sexual activity. Conclusion: Sexual function and its resultant impact on QoL is a major issue to an overwhelming majority of people living with SCI. This certainly constitutes the need for expanding research in multiple aspects to develop future therapeutic interventions for sexual health and SCI., Peer-reviewed article, Published.
The impact of step targeting during normal gait for persons wearing either a SACH or a dynamic-response foot
This study compared dynamic-response feet to SACH feet with respect to factors influencing unilateral transtibial amputee balance and ability to adapt to variable terrains. This was done by measuring ground reaction forces for 30% perturbations of step length during level walking. These perturbations resulted in either a lengthening or a shortening of one step length by 30% of the normal step length. Subjects walked along a 12 metre walkway and across two flush mounter force platforms while forces were recorded for both feet. Three experimental conditions were completed with each foot type: normal step length, short step length (reduced by 30% from normal), and long step length (increased by 30% from normal)., Research report, Published.
Impact of V2G on real-time adaptive Volt/VAr optimization of distribution networks
Proceeding of IEEE ElectricalPower and Energy Conference (EPEC 2013), Aug. 2013, Halifax, Canada. Deployment of Smartgrid downstream features such as Smart Metering, pervasive control and Distributed Management Systems has brought great opportunities for distribution network planners to optimize the network in more precise methods. Moreover, the advent of Electric Vehicles (EVs) has brought more opportunities for grid optimization. Recent studies stipulate that EVs are able to inject reactive power into the grid by changing their inverter's operating mode. This paper primarily discusses a real-time adaptive Volt/VAr Optimization (VVO) engine, designed to minimize system apparent power losses, optimize voltage profiles, and reduce the operating costs of Switched Capacitor Banks of the grid. The paper goes on to study the impact of EVs on the distribution network VVO, taking into account different EV charging and penetration levels and checks the validity of the proposed algorithm by employing revised IEEE-37 Node Test Feeder in presence of various load types as a case study., Conference paper, Published.
The importance of method selection in determining product integrity for nutrition research
The American Herbal Products Association estimates that there as many as 3000 plant species in commerce. The FDA estimates that there are about 85,000 dietary supplement products in the marketplace. The pace of product innovation far exceeds that of analytical methods development and validation, with new ingredients, matrixes, and combinations resulting in an analytical community that has been unable to keep up. This has led to a lack of validated analytical methods for dietary supplements and to inappropriate method selection where methods do exist. Only after rigorous validation procedures to ensure that methods are fit for purpose should they be used in a routine setting to verify product authenticity and quality. By following systematic procedures and establishing performance requirements for analytical methods before method development and validation, methods can be developed that are both valid and fit for purpose. This review summarizes advances in method selection, development, and validation regarding herbal supplement analysis and provides several documented examples of inappropriate method selection and application., Peer-reviewed article, Published.
Improved dynamic friction models for simulation of one-dimensional and two-dimensional stick-slip motion
In many mechanical systems, the tendency of sliding components to intermittently stick and slip leads to undesirable performance, vibration, and control behaviors. Computer simulations of mechanical systems with friction are difficult because of the strongly nonlinear behavior of the friction force near zero sliding velocity. In this paper, two improved friction models are proposed. One model is based on the force-balance method and the other model uses a spring-damper during sticking. The models are tested on hundreds of lumped mass-spring-damper systems with time-varying excitation and normal contact forces for both one-dimensional and two-dimensional stick-slip motions on a planar surface. Piece-wise continuous analytical solutions are compared with solutions using other published force-balance and spring-damper friction models. A method has been developed to set the size of the velocity window for Karnopp’s friction model. The extensive test results show that the new force-balance algorithm gives much lower sticking velocity errors compared to the original method and that the new spring-damper algorithm exhibits no spikes at the beginning of sticking. Weibull distributions of the sticking velocity errors enable maximum errors to be estimated a priori., Technical papers, Published. Received February 03, 2000; Revised August 17, 2000.

Pages