BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Carbonation in concrete infrastructure in the context of global climate change
In Part1 of this paper, a carbonation model was developed and experimentally verified which was able to forecast carbonation depth of a concrete specimen considering varying ambient temperature, humidityand CO2 concentrations. Part 2 of the paper applies the carbonation diffusion/reaction model developed in Part 1 to predict the effects of global climate change on the carbonation of concrete. Climate scenarios were formulated and combined with the model for two major Canadian cities, Toronto and Vancouver. Results show that for undamaged and unstressed concrete, climate change will significantly affect carbonation progress. The model showed that for unloaded, non-pozzolanic concrete, ultimate carbonation depths in Toronto and Vancouver could be up to 45% higher. For in-service structures under load, the rates of deterioration are likely to be even faster. This is a cause for concern, and much further effort must be devoted to fully understand these phenomena., Peer-reviewed article, Published. Received 18 October 2011; Revised 21 April 2012; Accepted 24 April 2012; Available online 10 May 2012.
Carbonation in concrete infrastructure in the context of global climate change
There is nearly unanimous consensus amongst scientists that increasing greenhouse gas emissions, including CO2 generated by human activity, are affecting the Earth’s climate. Increasing atmospheric CO2 emissions will likely increase the rates of carbonation in reinforced concrete structures.In this paper, the serviceable life, from construction through to cracking due to carbonation induced corrosion of concrete infrastructure is considered in various cities throughout the world. It was concluded that global climate change will affect the progression and will result in much higher ultimate carbonation depths in the long term., Peer-reviewed article, Published. Received 23 May 2012; Revised 1 October 2012; Accepted 9 November 2012; Available online 25 December 2012.