BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Determination of anthocyanins in cranberry fruit and cranberry fruit products by high-performance liquid chromatography with ultraviolet detection
A single-laboratory validation study was conducted on an HPLC method for the detection and quantification of cyanidin-3-O-galactoside (C3Ga), cyanidin-3-O-glucoside (C3GI), cyanidin-3-O-arabinoside (C3Ar), peonidin-3-O-galactoside (P3Ga), and peonidin-3-O-arabinoside (P3Ar) in cranberry fruit (Vaccinium macrocarpon Aiton) raw material and finished products. An extraction procedure using a combination of sonication and shaking with acidified methanol was optimized for all five anthocyanins in freeze-dried cranberry fruit and finished products (commercial extract powder, juice, and juice cocktail). Final extract solutions were analyzed by HPLC using a C18 RP column. Calibration curves for all anthocyanin concentrations had correlation coefficients (r2) of > or = 99.8%. The method detection limits for C3Ga, C3Gl, C3Ar, P3Ga, and P3Ar were estimated to be 0.018, 0.016, 0.006, 0.013, and 0.011 microg/mL, respectively. Separation was achieved with a chromatographic run time of 35 min using a binary mobile phase with gradient elution. Quantitative determination performed in triplicate on four test materials on each of 3 days (n = 12) resulted in RSD(r) from 1.77 to 3.31%. Analytical range, as defined by the calibration curves, was 0.57-36.53 microg/mL for C3Ga, 0.15-9.83 microg/mL for C3GI, 0.28-17.67 microg/mL for C3Ar, 1.01-64.71 microg/mL for P3Ga, and 0.42-27.14 microg/mL for P3Ar. For solid materials prepared by the described method, this translates to 0.06-3.65 mglg for C3Ga, 0.02-0.98 mg/g for C3Gl, 0.03-1.77 mg/g for C3Ar, 0.10-6.47 mg/g for P3Ga, and 0.04-2.71 mg/g for P3Ar., Peer-reviewed article, Published. Received August 5, 2010; Accepted by AP October 27, 2010.
Determination of phenolic constituents in echinacea raw materials and dietary supplements by HPLC-UV
A collaborative study was conducted to evaluate an HPLC method for determining phenolic compounds in Echinacea spp. raw materials, powdered extracts, and tinctures. Eleven collaborating laboratories received three practice samples representing each matrix type, phenolic reference standards, eight test samples as blind duplicates, the validated analytical method, and instructions. Test samples included two raw materials, four extracts (including one in combination with astragalus and reishi), one ethanolic tincture in combination with goldenseal, and one glycerite tincture. Each material was extracted with a 60% methanol aqueous solution, separated on a C18 column, and detected at 330 nm. Results reported by laboratories for total phenolics in Echinacea roots, aerial parts, and extracts ranged from 9.5 to 62.9 mg/g with RSDR ranging from 3.64 and 7.95% and Horwitz ratio (HorRat) values ranging from 1.06 to 2.01. Total phenolics in the ethanolic tincture ranged from 4837 to 5962 μg/mL, with an RSDR of 6.35% and a HorRat value of 1.45. The glycerite tincture showed poor interlaboratory precision with a HorRat value of 3.32, an RSDR of 21.8%, and reported total phenolic values ranging from 257 to 539 μg/mL., Peer-reviewed article, Published. Received May 4, 2016; Accepted by AP May 25, 2016.
Determination of β-N-methylamino-L-alanine, N-(2-aminoethyl)glycine, and 2,4-diaminobutyric acid in food products containing cyanobacteria by ultra-performance liquid chromatography and tandem mass spectrometry
A single-laboratory validation study was completed for the determination of β-N-methylamino-L-alanine (BMAA), N-(2-aminoethyl)glycine (AEG), and 2,4-diaminobutyric acid (DAB) in bulk natural health product supplements purchased from a health food store in Canada. BMAA and its isomers were extracted with acid hydrolysis to free analytes from protein association. Acid was removed with the residue evaporated to dryness and reconstituted with derivatization using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Fluor). Chromatographic separation and detection were achieved using RP ultra-performance LC coupled to a tandem mass spectrometer operated in multiple reaction monitoring mode. Data from biological samples were evaluated for precision and accuracy across different days to ensure repeatability. Accuracy was assessed by spike recovery of biological samples using varying amino acid concentrations, with an average recovery across all samples of 108.6%. The analytical range was found to be 764-0.746 ng/mL prior to derivatization, thereby providing a linear range compatible with potentially widely varying analyte concentrations in commercial health food products. Both the U. S. Food and Drug Administration (FDA) and U. S. Pharmacopeia definitions were evaluated for determining method limits, with the FDA approach found to be most suitable having an LOD of 0.187 ng/mL and LLOQ of 0.746 ng/mL. BMAA in the collected specimens was detected at concentrations lower than 1 μg/g, while AEG and DAB were found at concentrations as high as 100 μg/g. Finding these analytes, even at low concentrations, has potential public health significance and suggests a need to screen such products prior to distribution. The method described provides a rapid, accurate, and precise method to facilitate that screening process., Peer-reviewed article, Published. Received April 15, 2015; Accepted by SG June 22, 2015.
Evaluation of the antiproliferative effects of Essiac on in vitro and in vivo models of prostate cancer compared to paclitaxel
Essiac, a widely consumed, sparsely tested herbal tea, was evaluated for preparation consistency and antiproliferative effects on prostate cancer cells and xenografts. High performance liquid chromatography (HPLC) was used to compare different lots of Essiac and evaluate extraction consistency by comparing peak areas in concentrated preparations. Repeated analysis of one lot showed < 2% RSD between corresponding peaks. Absolute peak areas varied widely between lots, but similarity in relative size of corresponding peaks was observed. Cytotoxic effects of Essiac were tested in vitro by crystal violet assay and analysis of cell cycle distribution by flow cytometry, but no differences between control and treatment groups was observed. Paclitaxel was used as a positive control in cell cycle analysis and was the only treatment which showed significant effects on cell cycle distribution. Toxicity in nude mice was tested, and efficacy in inhibiting PC-3 xenograft growth. No toxicity or tumour size difference was observed dosing up to 240 mg/kg QD, over 28 days, excepting the positive control group treated with paclitaxel. Ki-67 and PCNA expression was analyzed in treated tumors, but no difference in expression of either marker was observed. These evaluations suggest Essiac has no marked antiproliferative effect on the models tested., Peer-reviewed article, Published.