BCIT Citations Collection | BCIT Institutional Repository

BCIT Citations Collection

Brain-computer interface design for asynchronous control applications
The low-frequency asynchronous switch design (LF-ASD) was introduced as a direct brain-computer interface (BCI) technology for asynchronous control applications. The LF-ASD operates as an asynchronous brain switch (ABS) which is activated only when a user intends control and maintains an inactive state output when the user is not meaning to control the device (i.e., they may be idle, thinking about a problem, or performing some other action). Results from LF-ASD evaluations have shown promise, although the reported error rates are too high for most practical applications. This paper presents the evaluation of four new LF-ASD designs with data collected from individuals with high-level spinal cord injuries and able-bodied subjects. These new designs incorporated electroencephalographic energy normalization and feature space dimensionality reduction. The error characteristics of the new ABS designs were significantly better than the LF-ASD design with true positive rate increases of approximately 33% for false positive rates in the range of 1%-2%. The results demonstrate that the dimensionality of the LF-ASD feature space can be reduced without performance degradation. The results also confirm previous findings that spinal cord-injured subjects can operate ABS designs to the same ability as able-bodied subjects., Peer-reviewed article, Published. Manuscript received June 30, 2003; revised February 6, 2004.
Brain interface research for asynchronous control applications
The Neil Squire Society has developed asynchronous, direct brain switches for self-paced control applications with mean activation rates of 73% and false positive error rates of 2%. This report summarizes our results to date, lessons learned, and current directions, including research into implanted brain interface designs., Peer-reviewed article, Published. Manuscript received July 16, 2005; revised March 15, 2006; March 20, 2006.
A comparative study on generating training-data for self-paced brain interfaces
Direct brain interface (BI) systems provide an alternative communication and control solution for individuals with severe motor disabilities, bypassing impaired interface pathways. Most BI systems are aimed to be operated by individuals with severe disabilities. With these individuals, there is no observable indicator of their intent to control or communicate with the BI system. In contrast, able-bodied subjects can perform the desired physical movements such as finger flexion and one can observe the movement as the indicator of intent. Since no external knowledge of intention is available for individuals with severe motor disabilities, generating the data for system training is problematic. This paper introduces three methods for generating training-data for self-paced BI systems and compares their performances with four alternative methods of training-data generation. Results of the offline analysis on the electroencephalogram data of eight subjects during self-paced BI experiments show that two of the proposed methods increase true positive rates (at fixed false positive rate of 2%) over that of the four alternative methods from 50.8%-58.4% to about 62% which corresponds to 3.6%-11.2% improvement., Peer-reviewed article, Published. Manuscript received June 26, 2006; Revised October 27, 2006; Accepted December 6, 2006.
Current trends in brain-computer interface research at the Neil Squire foundation
The Neil Squire Foundation (NSF) is a Canadian nonprofit organization whose purpose is to create opportunities for independence for individuals who have significant physical disabilities. Over the last ten years, our team in partnership with researchers at the Electrical and Computer Engineering Department, the University of British Columbia, has been working to develop a direct brain-controlled switch for individuals with significant physical disabilities. The NSF Brain Interface Project primarily focuses on the development of brain-computer interface switch technologies for intermittent (or asynchronous) control in natural environments. That is, technologies that will work when the user intends control but also remains in a stable off state when there is no intent to control. A prototype of such a switch has successfully been developed. This switch has demonstrated classification accuracies greater than 94%. The initial results are promising, but further research is required to improve switch accuracies and reliability and to test these switch technologies over a larger population of users and operating conditions. This paper provides an overview of the NSF brain-switch technologies and details our approach to future work in this area., Peer-reviewed article, Published. Manuscript received June 20, 2002; revised January 22, 2003.
Real-time control of a video game with a direct brain-computer interface
Mason and Birch have developed a direct brain–computer interface for intermittent control of devices such as environmental control systems and neuroprotheses. This EEG-based brain switch, named the LF-ASD, has been used in several off-line studies, but little is known about its usability with real-world devices and computer applications. In this study, able-bodied individuals and people with high-level spinal injury used the LF-ASD brain switch to control a video game in real time. Both subject groups demonstrated switch activations varying from 30% to 78% and false-positive rates in the range of 0.5% to 2.2% over three 1-hour test sessions. These levels correspond to switch classification accuracies greater than 94% for all subjects. The results suggest that subjects with spinal cord injuries can operate the brain switch to the same ability as able-bodied subjects in a real-time control environment. These results support the findings of previous studies., Peer-reviewed article, Published.